Abstract:
A system on a chip (SoC) is provided including processing cores and a root complex. The transaction requests are communicated between a root port of the root complex and a device, the root port including electrical idle (EI) exit detect circuitry and a reference clock source. The root port supports a first link state, in which the reference clock source and EI exit detect circuitry of the root port are disabled but a common mode voltage is maintained, and a second link state, in which the reference clock source and EI exit detect circuitry are disabled and the common mode voltage is not maintained. The root port transitions to the first link state based on a service latency requirement of the device being less than a threshold and to the second link state based on the service latency requirement being greater than or equal to the threshold.
Abstract:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.
Abstract:
A method and apparatus to reduce the idle link power in a platform. In one embodiment of the invention, the host and its coupled endpoint(s) in the platform each has a low power idle link state that allows disabling of the high speed link circuitry in both the host and its coupled endpoint(s). This allows the platform to reduce its idle power as both the host and its coupled endpoint(s) are able to turn off their high speed link circuitry in one embodiment of the invention.
Abstract:
A system on a chip (SoC) is provided including processing cores and a root complex. The transaction requests are communicated between a root port of the root complex and a device, the root port including electrical idle (EI) exit detect circuitry and a reference clock source. The root port supports a first link state, in which the reference clock source and EI exit detect circuitry of the root port are disabled but a common mode voltage is maintained, and a second link state, in which the reference clock source and EI exit detect circuitry are disabled and the common mode voltage is not maintained. The root port transitions to the first link state based on a service latency requirement of the device being less than a threshold and to the second link state based on the service latency requirement being greater than or equal to the threshold.
Abstract:
A method and apparatus to reduce the idle link power in a platform. In one embodiment of the invention, the host and its coupled endpoint(s) in the platform each has a low power idle link state that allows disabling of the high speed link circuitry in both the host and its coupled endpoint(s). This allows the platform to reduce its idle power as both the host and its coupled endpoint(s) are able to turn off their high speed link circuitry in one embodiment of the invention.
Abstract:
A method and apparatus to reduce the idle link power in a platform. In one embodiment of the invention, the host and its coupled endpoint(s) in the platform each has a low power idle link state that allows disabling of the high speed link circuitry in both the host and its coupled endpoint(s). This allows the platform to reduce its idle power as both the host and its coupled endpoint(s) are able to turn off their high speed link circuitry in one embodiment of the invention.
Abstract:
A method and apparatus to reduce the idle link power in a platform. In one embodiment of the invention, the host and its coupled endpoint(s) in the platform each has a low power idle link state that allows disabling of the high speed link circuitry in both the host and its coupled endpoint(s). This allows the platform to reduce its idle power as both the host and its coupled endpoint(s) are able to turn off their high speed link circuitry in one embodiment of the invention.