Abstract:
A communication device may include a millimeter wave (mm-wave) antenna array having antenna elements, a mm-wave element (e.g. lens), and one or more transceivers (e.g. first and second transceivers). The mm-wave lens may be configured to adjust the first beam and the second beam as the first and second beams pass through the mm-wave lens. The first transceiver can selectively couple to the antenna elements, the first transceiver being configured to drive a first selected antenna element of the antenna elements to transmit a beam from the selected first antenna element. The second transceiver may selectively couple to the antenna elements, the second transceiver being configured to drive a second selected antenna element of the antenna elements to transmit a second beam from the selected second antenna element.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems related to a wireless communication device using time-variant antenna. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems related to a wireless communication device using time-variant antenna. Other embodiments may be described and/or claimed.
Abstract:
An antenna array architecture is provided for beamforming applications. The antenna array architecture facilitates a compact and wideband dual-polarized beam-switching antenna array architecture, which may be implemented in a cost-effective multi-layer PCB or package. The antenna array architecture is implemented as part of a package substrate having a number of layers. Each of the layers comprises various conductive elements such as conductive segments and/or traces that are disposed thereon in accordance with the respective antenna components.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems related to a wireless communication device using time-variant antenna. Other embodiments may be described and/or claimed.
Abstract:
A communication device may include a millimeter wave (mm-wave) antenna array having antenna elements, a mm-wave element (e.g. lens), and one or more transceivers (e.g. first and second transceivers). The mm-wave lens may be configured to adjust the first beam and the second beam as the first and second beams pass through the mm-wave lens. The first transceiver can selectively couple to the antenna elements, the first transceiver being configured to drive a first selected antenna element of the antenna elements to transmit a beam from the selected first antenna element. The second transceiver may selectively couple to the antenna elements, the second transceiver being configured to drive a second selected antenna element of the antenna elements to transmit a second beam from the selected second antenna element.
Abstract:
A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
Abstract:
A rotatable circular waveguide structure is described that may comprise circular waveguide sections configured to propagate electromagnetic radiation. The circular waveguide sections may enable data signals to be transmitted between portions of an electronic device, such as a chassis and display portion, which may be rotatable with respect to one another. The rotatable circular waveguide structure may comprise one or more circular waveguide sections that are routed through a hinge of the electronic device, as well as one or more rotatable junctions. The rotatable junctions enable a rotation of circular waveguide sections with respect to one another as the coupled portions of the electronic device are also rotated. The rotatable circular waveguide structure may replace the use of data cables that are conventionally used to carry data signals between portions of an electronic device.
Abstract:
Embodiments of the present disclosure describe methods, apparatuses, and systems related to a wireless communication device using time-variant antenna. Other embodiments may be described and/or claimed.