Abstract:
A radio equipment comprises waveform generator to receive input data and to generate output baseband waves corresponding to the received input data, and a radio-frequency component to transform the baseband waves generated in radio waves. The waveform generator comprises a Radio Virtual Machine (RVM) that has been compiled to operate on hardware underlying the RVM. The RVM comprises an associated RVM class that establishes a level of reconfigurability of low-level parameters of the RVM. The RVM class comprises one of a plurality of RVM classes in which each RVM class comprises a corresponding level of reconfigurability of low-level RVM parameters and a corresponding level of certification testing for reconfigured RVMs of the class. In one exemplary embodiment, the plurality of RVM classes comprises at least one RVM class comprising full reconfigurability of low-level RVM parameters and at least one RVM class comprising limited reconfigurability of low-level RVM parameters.
Abstract:
The disclosure generally relates to a method, apparatus and system for identifying non-compliant radio emissions and for enforcing compliance. In one embodiment, the disclosure relates to a dynamic radiation control of a radio by measuring a signal attribute for an outbound signal having a protocol; comparing the signal attribute with a predefined mask, the predefined mask governed by at least one of a radio location or a signal protocol; and determining whether to transmit the outbound signal.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of configuring a radio transceiver. For example, some embodiment include a radio virtual machine (RVM) to configure a radio transceiver, the RVM including a radio processor to execute a first code configuring one or more transceiver functionalities independent of a configuration of the radio transceiver, and to generate a second code based on the configuration of the radio transceiver and the first code, wherein the second code is to be executed by the radio transceiver to configure the one or more transceiver functionalities for the radio transceiver.
Abstract:
A method for device configuration is described comprising storing information about whether a mobile communication system comprising a mobile communication device operates correctly when a configuration is applied in a context of a configuration history to the mobile communication device; receiving a request for a configuration to be applied to mobile communication devices; and determining a configuration to be applied to the mobile communication devices based on the stored information.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of configuring a radio transceiver. For example, some embodiment include a radio virtual machine (RVM) to configure a radio transceiver, the RVM including a radio processor to execute a first code configuring one or more transceiver functionalities independent of a configuration of the radio transceiver, and to generate a second code based on the configuration of the radio transceiver and the first code, wherein the second code is to be executed by the radio transceiver to configure the one or more transceiver functionalities for the radio transceiver.
Abstract:
Techniques and mechanisms for exchanging control signals in a data path module of a data stream processing engine. In an embodiment, the data path module may be configured to form a set of one or more data paths corresponding to an instruction which is to be executed. In another embodiment, data processing units of the data path module may be configured to exchange one or more control signals for elastic execution of the instruction.
Abstract:
Techniques and mechanisms for exchanging control signals in a data path module of a data stream processing engine. In an embodiment, the data path module may be configured to form a set of one or more data paths corresponding to an instruction which is to be executed. In another embodiment, data processing units of the data path module may be configured to exchange one or more control signals for elastic execution of the instruction.
Abstract:
The disclosure generally relates to a method, apparatus and system for identifying non-compliant radio emissions and for enforcing compliance. In one embodiment, the disclosure relates to a dynamic radiation control of a radio by measuring a signal attribute for an outbound signal having a protocol; comparing the signal attribute with a predefined mask, the predefined mask governed by at least one of a radio location or a signal protocol; and determining whether to transmit the outbound signal.
Abstract:
Techniques and mechanisms for exchanging control signals in a data path module of a data stream processing engine. In an embodiment, the data path module may be configured to form a set of one or more data paths corresponding to an instruction which is to be executed. In another embodiment, data processing units of the data path module may be configured to exchange one or more control signals for elastic execution of the instruction.
Abstract:
The disclosure generally relates to a method, apparatus and system for identifying non-compliant radio emissions and for enforcing compliance. In one embodiment, the disclosure relates to a dynamic radiation control of a radio by measuring a signal attribute for an outbound signal having a protocol; comparing the signal attribute with a predefined mask, the predefined mask governed by at least one of a radio location or a signal protocol; and determining whether to transmit the outbound signal.