Oxides with Thin Metallic Layers as Transparent Ohmic Contacts for P-Type and N-Type Gallium Nitride
    1.
    发明申请
    Oxides with Thin Metallic Layers as Transparent Ohmic Contacts for P-Type and N-Type Gallium Nitride 有权
    具有薄金属层的氧化物作为P型和N型氮化镓的透明欧姆接触

    公开(公告)号:US20160013367A1

    公开(公告)日:2016-01-14

    申请号:US14330616

    申请日:2014-07-14

    Abstract: Transparent conductive layers usable as ohmic contacts for III-V semiconductors with work functions between 4.1 and 4.7 eV are formed by annealing layers of transparent oxide with thin (0.1-5 nm) layers of conductive metal. When the layers interdiffuse during the annealing, some of the conductive metal atoms remain free to reduce resistivity and others oxidize to reduce optical absorption. Examples of the transparent oxides include indium-tin oxide, zinc oxide, and aluminum zinc oxide with up to 5 wt % Al. Examples of the metals include aluminum and titanium. The work function of the transparent conductive layer can be tuned to match the contacted semiconductor by adjusting the ratio of metal to transparent oxide.

    Abstract translation: 通过用薄(0.1-5nm)导电金属层的透明氧化物退火层,形成功函数为4.1和4.7eV的III-V半导体可用作欧姆接触的透明导电层。 当退火期间层间相互扩散时,一些导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降 透明氧化物的实例包括氧化铟锡,氧化锌和至多5重量%的Al的氧化锌。 金属的实例包括铝和钛。 通过调整金属与透明氧化物的比例,可以调整透明导电层的功函数以使接触的半导体匹配。

    Zinc stannate ohmic contacts for p-type gallium nitride
    2.
    发明授权
    Zinc stannate ohmic contacts for p-type gallium nitride 有权
    用于p型氮化镓的锡酸锡欧姆接触

    公开(公告)号:US09246062B2

    公开(公告)日:2016-01-26

    申请号:US14259387

    申请日:2014-04-23

    Abstract: Transparent ohmic contacts to p-GaN and other high-work-function (≧4.2 eV) semiconductors are fabricated from zinc stannate (e.g., ZnSnO3). ZnO and SnO2 may be sputtered from separate targets and annealed to form the zinc stannate. The Zn:Sn ratio may be tuned over the range between 1:2 and 2:1 to optimize bandgap, work function, conductivity, and transparency for the particular semiconductor and wavelength of interest. Conductivity may be improved by crystallizing the zinc stannate, by doping with up to 5 wt % Al or In, or both.

    Abstract translation: 由锡酸锡(例如ZnSnO 3)制造对p-GaN和其它高功函数(≥4.2eV)的半导体的透明欧姆接触。 ZnO和SnO2可以从单独的靶溅射并退火以形成锡酸锌。 可以在1:2和2:1之间的范围内调整Zn:Sn比,以优化特定半导体和感兴趣的波长的带隙,功函数,电导率和透明度。 可以通过使锡酸锌结晶,通过掺入高达5重量%的Al或In或两者来改善电导率。

    Corrosion-Resistant Silver Coatings with Improved Adhesion to III-V Materials
    3.
    发明申请
    Corrosion-Resistant Silver Coatings with Improved Adhesion to III-V Materials 审中-公开
    耐腐蚀银涂层与III-V材料的粘合性改善

    公开(公告)号:US20150093500A1

    公开(公告)日:2015-04-02

    申请号:US14136125

    申请日:2013-12-20

    CPC classification number: H01L33/405 H01L2933/0016

    Abstract: The electrical and optical performance of silver LED reflective contacts in III-V devices such as GaN LEDs is limited by silver's tendency to agglomerate during annealing processes and to corrode on contact with silver-reactive materials elsewhere in the device (for example, gallium or aluminum). Agglomeration and reaction are prevented, and crystalline morphology of the silver layer may be optimized, by forming a diffusion-resistant transparent conductive layer between the silver and the source of silver-reacting metal, (2) doping the silver or the diffusion-resistant transparent conductive layer for improved adhesion to adjacent layers, or (3) doping the silver with titanium, which in some embodiments prevents agglomeration and promotes crystallization of the silver in the preferred orientation.

    Abstract translation: III-V器件如GaN LED中的银LED反射触点的电学和光学性能受到退火过程中银的凝聚趋势的限制,并且与器件其他地方的银反应性材料(例如,镓或铝 )。 防止聚集和反应,通过在银和银反应金属的源之间形成耐扩散的透明导电层,可以优化银层的结晶形态,(2)掺杂银或扩散阻挡的透明 导电层,用于改善与相邻层的粘附性,或(3)用钛掺杂银,在一些实施方案中,该银防止聚集并促进优选<111>取向的银的结晶。

    Conductive Transparent Reflector
    4.
    发明申请
    Conductive Transparent Reflector 审中-公开
    导电透明反射器

    公开(公告)号:US20150060910A1

    公开(公告)日:2015-03-05

    申请号:US14014029

    申请日:2013-08-29

    CPC classification number: H01L33/405 H01L33/42

    Abstract: Methods to improve the reflection of light emitting devices are disclosed. A method consistent with the present disclosure includes forming a light generating layer over a site-isolated region of a substrate. Next, forming a first transparent conductive layer over the light generating layer. Forming a low refractive index material over the first transparent conductive layer, and in time, forming a second transparent conductive layer over the low refractive index material. Subsequently, forming a reflective material layer thereon. Accordingly, methods consistent with the present disclosure may form a plurality of light emitting devices in various site-isolated regions on a substrate.

    Abstract translation: 公开了改善发光器件反射的方法。 与本公开一致的方法包括在衬底的位置隔离区域上形成发光层。 接着,在光生成层上形成第一透明导电层。 在第一透明导电层上形成低折射率材料,并在时间上在低折射率材料上形成第二透明导电层。 随后,在其上形成反射材料层。 因此,与本公开一致的方法可以在衬底上的各种位置隔离区域中形成多个发光器件。

    Variable composition transparent conductive oxide layer and methods of forming thereof
    5.
    发明授权
    Variable composition transparent conductive oxide layer and methods of forming thereof 有权
    可变组合物透明导电氧化物层及其形成方法

    公开(公告)号:US09391232B1

    公开(公告)日:2016-07-12

    申请号:US14577967

    申请日:2014-12-19

    Abstract: Provided are light emitting diodes (LEDs) and methods of fabricating such LEDs. An LED may include a transparent conductive oxide (TCO) layer having a varying refractive index. For example, the refractive index may be higher at the interface of the TCO layer with an epitaxial stack than on the side of the TCO layer. The refractive index variability allows reducing light intensity losses in the LED. The refractive index variability may be achieved by feeding a substrate through a deposition chamber having a variable concentration of at least one process gas, such as oxygen. Specifically, the concentration of the process gas may be higher at one slit opening than at another slit opening. As the substrate moves through the deposition chamber, the TCO layer is continuously deposited. Due to the concentration variability, the resulting TCO layer may have a variable composition throughout the thickness of the TCO layer.

    Abstract translation: 提供了发光二极管(LED)和制造这种LED的方法。 LED可以包括具有变化的折射率的透明导电氧化物(TCO)层。 例如,在具有外延堆叠的TCO层的界面处的折射率可以高于在TCO层的侧面上的折射率。 折射率变化允许减少LED中的光强度损失。 折射率可变性可以通过将衬底通过具有可变浓度的至少一种工艺气体(例如氧气)的沉积室进行。 具体地,处理气体的浓度在一个狭缝开口处可以比在另一个狭缝开口处更高。 当衬底移动通过沉积室时,TCO层被连续沉积。 由于浓度变化,所得的TCO层可以在TCO层的整个厚度上具有可变的组成。

    Zinc Stannate Ohmic Contacts for P-Type Gallium Nitride
    6.
    发明申请
    Zinc Stannate Ohmic Contacts for P-Type Gallium Nitride 有权
    锡锡酸盐欧姆接触P型氮化镓

    公开(公告)号:US20150311397A1

    公开(公告)日:2015-10-29

    申请号:US14259387

    申请日:2014-04-23

    Abstract: Transparent ohmic contacts to p-GaN and other high-work-function (≧4.2 eV) semiconductors are fabricated from zinc stannate (e.g., ZnSnO3). ZnO and SnO2 may be sputtered from separate targets and annealed to form the zinc stannate. The Zn:Sn ratio may be tuned over the range between 1:2 and 2:1 to optimize bandgap, work function, conductivity, and transparency for the particular semiconductor and wavelength of interest. Conductivity may be improved by crystallizing the zinc stannate, by doping with up to 5 wt % Al or In, or both.

    Abstract translation: 由锡酸锡(例如ZnSnO 3)制造对p-GaN和其它高功函数(≥4.2eV)的半导体的透明欧姆接触。 ZnO和SnO2可以从单独的靶溅射并退火以形成锡酸锌。 可以在1:2和2:1之间的范围内调整Zn:Sn比,以优化特定半导体和感兴趣的波长的带隙,功函数,电导率和透明度。 可以通过使锡酸锌结晶,通过掺入高达5重量%的Al或In或两者来改善电导率。

    Nickel-Titanium and Related Alloys as Silver Diffusion Barriers
    7.
    发明申请
    Nickel-Titanium and Related Alloys as Silver Diffusion Barriers 审中-公开
    镍 - 钛和相关合金作为银扩散壁垒

    公开(公告)号:US20150091032A1

    公开(公告)日:2015-04-02

    申请号:US14136196

    申请日:2013-12-20

    CPC classification number: H01L33/405 H01L33/0095 H01L2933/0016

    Abstract: Diffusion of silver from LED reflector layers is blocked by 10-50 nm barrier layers of nickel-titanium (NiTi) alloys. Optionally, the alloys also include one or more of tungsten (W), niobium (Nb), aluminum (Al), vanadium (V), tantalum (Ta), or chromium (Cr). These barriers may omit the noble-metal (e.g., platinum or gold) cap used with silver barriers based on other materials.

    Abstract translation: 来自LED反射层的银的扩散被镍 - 钛(NiTi)合金的10-50nm阻挡层阻挡。 任选地,合金还包括钨(W),铌(Nb),铝(Al),钒(V),钽(Ta)或铬(Cr)中的一种或多种。 这些障碍物可以省略基于其它材料与银屏障一起使用的贵金属(例如,铂或金)帽。

    Variable Composition Transparent Conductive Oxide Layer and Methods of Forming Thereof
    8.
    发明申请
    Variable Composition Transparent Conductive Oxide Layer and Methods of Forming Thereof 有权
    可变组成透明导电氧化物层及其形成方法

    公开(公告)号:US20160181468A1

    公开(公告)日:2016-06-23

    申请号:US14577967

    申请日:2014-12-19

    Abstract: Provided are light emitting diodes (LEDs) and methods of fabricating such LEDs. An LED may include a transparent conductive oxide (TCO) layer having a varying refractive index. For example, the refractive index may be higher at the interface of the TCO layer with an epitaxial stack than on the side of the TCO layer. The refractive index variability allows reducing light intensity losses in the LED. The refractive index variability may be achieved by feeding a substrate through a deposition chamber having a variable concentration of at least one process gas, such as oxygen. Specifically, the concentration of the process gas may be higher at one slit opening than at another slit opening. As the substrate moves through the deposition chamber, the TCO layer is continuously deposited. Due to the concentration variability, the resulting TCO layer may have a variable composition throughout the thickness of the TCO layer.

    Abstract translation: 提供了发光二极管(LED)和制造这种LED的方法。 LED可以包括具有变化的折射率的透明导电氧化物(TCO)层。 例如,在具有外延堆叠的TCO层的界面处的折射率可以高于在TCO层的侧面上的折射率。 折射率变化允许减少LED中的光强度损失。 折射率可变性可以通过将衬底通过具有可变浓度的至少一种工艺气体(例如氧气)的沉积室进行。 具体地,处理气体的浓度在一个狭缝开口处可以比在另一个狭缝开口处更高。 当衬底移动通过沉积室时,TCO层被连续沉积。 由于浓度变化,所得的TCO层可以在TCO层的整个厚度上具有可变的组成。

    Indium Zinc Oxide for Transparent Conductive Oxide Layer and Methods of Forming Thereof
    9.
    发明申请
    Indium Zinc Oxide for Transparent Conductive Oxide Layer and Methods of Forming Thereof 审中-公开
    用于透明导电氧化物层的氧化铟锌及其形成方法

    公开(公告)号:US20160111603A1

    公开(公告)日:2016-04-21

    申请号:US14519274

    申请日:2014-10-21

    Abstract: Provided are light emitting diodes (LEDs) and methods of fabricating such LEDs. Specifically, an LED has an epitaxial stack and current distribution layer disposed on and interfacing the epitaxial stack. The current distribution layer includes indium oxide and zinc oxide such that the concentration of indium oxide is between about 5% and 15% by weight. During fabrication, the current distribution layer is annealed at a temperature of less than about 500° C. or even at less than about 400° C. These low anneal temperature helps preserving the overall thermal budget of the LED while still yielding a current distribution layer having a low resistivity and low adsorption. A particular composition and method of forming the current distribution layer allows using lower annealing temperatures. In some embodiments, the current distribution layer is sputtered using indium oxide and zinc oxide targets at a pressure of less than 5 mTorr.

    Abstract translation: 提供了发光二极管(LED)和制造这种LED的方法。 具体地说,LED具有外延层和电流分布层,其布置在外延层上并与外延层叠接合。 电流分布层包括氧化铟和氧化锌,使得氧化铟的浓度在约5重量%至15重量%之间。 在制造期间,电流分布层在小于约500℃或甚至低于约400℃的温度下退火。这些低退火温度有助于保持LED的总体热预算,同时仍然产生电流分布层 具有低电阻率和低吸附性。 形成电流分布层的特定组成和方法允许使用较低的退火温度。 在一些实施例中,使用氧化铟和氧化锌靶在小于5mTorr的压力下溅射电流分布层。

    Oxides with thin metallic layers as transparent ohmic contacts for p-type and n-type gallium nitride
    10.
    发明授权
    Oxides with thin metallic layers as transparent ohmic contacts for p-type and n-type gallium nitride 有权
    具有薄金属层的氧化物作为p型和n型氮化镓的透明欧姆接触

    公开(公告)号:US09306126B2

    公开(公告)日:2016-04-05

    申请号:US14330616

    申请日:2014-07-14

    Abstract: Transparent conductive layers usable as ohmic contacts for III-V semiconductors with work functions between 4.1 and 4.7 eV are formed by annealing layers of transparent oxide with thin (0.1-5nm) layers of conductive metal. When the layers interdiffuse during the annealing, some of the conductive metal atoms remain free to reduce resistivity and others oxidize to reduce optical absorption. Examples of the transparent oxides include indium-tin oxide, zinc oxide, and aluminum zinc oxide with up to 5 wt % Al. Examples of the metals include aluminum and titanium. The work function of the transparent conductive layer can be tuned to match the contacted semiconductor by adjusting the ratio of metal to transparent oxide.

    Abstract translation: 通过用薄(0.1-5nm)导电金属层的透明氧化物退火层,形成可用作功函数为4.1和4.7eV的III-V半导体的欧姆接触的透明导电层。 当退火期间层间相互扩散时,一些导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降低电阻率,而其它导电金属原子保持自由以降 透明氧化物的实例包括氧化铟锡,氧化锌和至多5重量%的Al的氧化锌。 金属的实例包括铝和钛。 通过调整金属与透明氧化物的比例,可以调整透明导电层的功函数以使接触的半导体匹配。

Patent Agency Ranking