Abstract:
A patient side cart for a teleoperated surgical system may include a base, a column connected to the base, a boom connected to the column, a surgical instrument manipulator arm connected to the boom, and an obstacle indication system comprising an illumination source that directs light in a path of the boom. Various exemplary embodiments also encompass methods of providing obstacle indication via a patient side cart of a teleoperated surgical system, including directing light onto an object in a path of the boom to indicate that the object is located in a path of the boom, and methods of determining a predetermined height to be stored in a patient side cart for a teleoperated surgical system, including illuminating an object in the path of the patient side cart and storing a current height of the patient side cart as the predetermined height.
Abstract:
Techniques for determining an ergonomic center for an input control include an input control and a control unit including one or more processors. Movement of the input control during teleoperation is usable to command corresponding movement of an end effector. One or more control points are associated with the input control. The control unit is configured to detect a start of a repositioning movement for the input control, detect an end of the repositioning movement, determine one or more corresponding end positions, each corresponding end position being a position of a control point of the one or more control points at the end of the repositioning movement, determine an input control reference point based on the one or more corresponding end positions, and aggregate the input control reference point with at least one previously obtained input control reference point to determine an ergonomic center for the input control.
Abstract:
A surgical drape for a patient side cart of a teleoperated surgical system may include a body and an attachment device feature. The body may be sized and shaped to cover at least a portion of an arm or main column of the patient side cart. The attachment device feature may be connected to body. The attachment device feature may be configured to install the surgical drape to the arm or main column so as to cover at least a portion of the arm or main column with the surgical drape. The attachment device feature may be detectable by a sensor in an installed position of the surgical drape on the arm or main column. At least one of the main column and the arm may include a sensor to detect an attachment device feature of a surgical drape.
Abstract:
A surgical drape for a patient side cart of a teleoperated surgical system may comprise a body sized and shaped to cover at least a portion of an arm or main column of the patient side cart, and an attachment device feature connected to the body, the attachment device feature being configured to install the surgical drape to the arm or main column so as to cover at least a portion of the arm or main column with the surgical drape. In an installed position of the surgical drape on the arm or the main column, the attachment device feature is positioned at a location in sensing proximity of a sensor of the patient side cart.
Abstract:
A patient side cart for a teleoperated surgical system may comprise a column extending from a base, the column having a first end connected to the base and a second end opposite the first end. The patient side cart may further include a surgical instrument manipulator arm coupled proximate the second end of the column, and an obstacle indication system comprising an illumination source mounted on the patient side cart at a height above a location the surgical instrument manipulator arm is coupled to the second end of the column, the height being measured in a direction the column extends from the base.
Abstract:
A system and method of recentering imaging devices and input controls includes a medical device having one or more end effectors, an imaging device, one or more input controls for teleoperating the one or more end effectors, and a control unit including one or more processors coupled to the end effectors, the imaging device, and the input controls. The control unit suspends teleoperated control of the end effectors by the input controls in response to a recentering request, determines a view recentering move for the imaging device so that the end effectors are contained within a view space of the imaging device, determines one or more input control recentering moves to provide positional and orientational harmony between each of the input controls and a corresponding one of the end effectors, executes the view and input control recentering moves, and reinstates teleoperated control of the end effectors by the input controls.