Abstract:
A method and circuit for testing an acoustic sensor are disclosed. In a first aspect, the method comprises using electro-mechanical features of the acoustic sensor to measure characteristic of the acoustic sensor. In a second aspect, the method comprises utilizing an actuation signal to evaluate mechanical characteristics of the acoustic sensor. In a third aspect, the method comprises using a feedthrough cancellation system to measure a capacitance of the acoustic sensor. In the fourth aspect, the circuit comprises a mechanism for driving an electrical signal into a signal path of the acoustic sensor to cancel an electrical feedthrough signal provided to the signal path, wherein any of the electrical signal and the electrical feedthrough signal are within or above an audio range.
Abstract:
A method and circuit for testing an acoustic sensor are disclosed. In a first aspect, the method comprises using electro-mechanical features of the acoustic sensor to measure characteristic of the acoustic sensor. In a second aspect, the method comprises utilizing an actuation signal to evaluate mechanical characteristics of the acoustic sensor. In a third aspect, the method comprises using a feedthrough cancellation system to measure a capacitance of the acoustic sensor. In the fourth aspect, the circuit comprises a mechanism for driving an electrical signal into a signal path of the acoustic sensor to cancel an electrical feedthrough signal provided to the signal path, wherein any of the electrical signal and the electrical feedthrough signal are within or above an audio range.
Abstract:
A device and a microphone are disclosed. The device comprises a circuit board and a plurality of pads on the circuit board, wherein at least one of the plurality of pads is split into at least two portions that are electrically isolated from each other. The microphone comprises a circuit board, a seal structure on the circuit board, and a plurality of pads on the circuit board, wherein at least one of the plurality of pads is split into at least two portions that are electrically isolated from each other.
Abstract:
A programmable acoustic sensor is disclosed. The programmable acoustic sensor includes a MEMS transducer and a programmable circuitry coupled to the MEMS transducer. The programmable circuitry includes a power pin and a ground pin. The programmable acoustic sensor also includes a communication channel enabling data exchange between the programmable circuitry and a host system. One of the power pin and the ground pin can be utilized for data exchange.
Abstract:
A method and system for measuring displacement of a structure is disclosed. The method and system comprise providing a first capacitance and providing a second capacitance. The first and second capacitances share a common terminal. The method and system further include determining a difference of the inverses of the value of the first and second capacitances when the structure is displaced. The first capacitance varies in inverse relation to the displacement of the structure.