Abstract:
A system and method for controlling temperature of a MEMS sensor are disclosed. In a first aspect, the system comprises a MEMS cap encapsulating the MEMS sensor and a CMOS die vertically arranged to the MEMS cap. The system includes a heater integrated into the MEMS cap. The integrated heater is activated to control the temperature of the MEMS sensor. In a second aspect, the method comprises encapsulating the MEMS sensor with a MEMS cap and coupling a CMOS die to the MEMS cap. The method includes integrating a heater into the MEMS cap. The integrated heater is activated to control the temperature of the MEMS sensor.
Abstract:
A rotational sensor for measuring rotational acceleration is disclosed. The rotational sensor comprises a sense substrate; at least two proof masses, and a set of two transducers. Each of the at least two proof masses is anchored to the sense substrate via at least one flexure and electrically isolated from each other; and the at least two proof masses are capable of rotating in-plane about a Z-axis relative to the sense substrate, wherein the Z-axis is normal to the substrate. Each of the transducers can sense rotation of each proof mass with respect to the sense substrate in response to a rotation of the rotational sensor.