Abstract:
A sensor is disclosed. The sensor includes a substrate and at least two proof masses. The sensor also includes a flexible coupling between the at least two proof masses and the substrate. The at least two coupling proof masses move in an anti-phase direction normal to a plane of the substrate in response to acceleration.
Abstract:
A system and/or method for utilizing mechanical motion limiters to control proof mass amplitude in MEMS devices (e.g., MEMS devices having resonant MEMS structures, for example various implementations of gyroscopes, magnetometers, accelerometers, etc.). As a non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished during normal (e.g., steady state) gyroscope operation utilizing impact stops (e.g., bump stops) of various designs. As another non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished utilizing non-impact limiters (e.g., springs) of various designs, for example springs exhibiting non-linear stiffness characteristics through at least a portion of their normal range of operation.
Abstract:
A system and/or method for utilizing mechanical motion limiters to control proof mass amplitude in MEMS devices (e.g., MEMS devices having resonant MEMS structures, for example various implementations of gyroscopes, magnetometers, accelerometers, etc.). As a non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished during normal (e.g., steady state) gyroscope operation utilizing impact stops (e.g., bump stops) of various designs. As another non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished utilizing non-impact limiters (e.g., springs) of various designs, for example springs exhibiting non-linear stiffness characteristics through at least a portion of their normal range of operation.