摘要:
A device for processing of highly viscous photopolymerizable material for layer-by-layer generation of a shaped body comprises a vat including a bottom which is at least in certain areas thereof transparent, a build platform, an exposure unit for exposing a material layer formed between the lower side of the build platform and the vat bottom in a locally selective manner, a control unit in order to adapt the relative position of the build platform to the vat bottom after each exposure step for a layer, in order to successively build up the shaped body in the desired shape, and a moveably guided doctor blade arrangement including a drive unit for moving the doctor blade arrangement back and forth underneath the build platform. The doctor blade arrangement comprises two doctor blades spaced apart in movement direction, which doctor blades are moveable at a constant distance to the vat bottom along the bottom. The vat includes vat end walls such that the doctor blade leading in movement direction in each case moves towards one of the vat end walls. Between the two doctor blades a chamber is formed which is open at its lower side, wherein walls of the chamber include at least one opening extending through the wall in movement direction for forming an overflow channel, so that material piling up between the leading doctor blade and the facing vat end wall is pressed through they at least overflow channel into the chamber.
摘要:
The invention relates to a method for the construction of a shaped body from photopolymerizable material by using lithography-based generative production, in which a layer of liquid photopolymerizable material is defined on a production platform, and is polymerized in an exposure region having a predetermined contour, a further layer of photopolymerizable material is defined, the layer defined last is polymerized in an exposure region having a predetermined contour for the layer defined last, and the latter two steps are repeated until a shaped body having a predetermined shape has been formed by the sequence of cured layers with contours predetermined layer by layer, each exposure in an exposure region having a predetermined contour being carried out by controlled activation of individual exposure elements in a two-dimensional array of exposure elements, each exposure element being assigned an image element, wherein the exposure of the exposure region is carried out by a common light source and by a two-dimensional light intensity modulator which is illuminated by the light source and which has a grid of individually controllable intensity modulators, in such a way that each illuminated intensity modulator forms and exposure element that exposes an image element in the exposure region, wherein a two-dimensional matrix is compiled for each exposure step of a layer, each element of the matrix being assigned to an exposure element in the array of exposure elements and control instructions for this exposure element being obtained in the form of a time-dependent function which individually establishes the intensity profile of the radiation of the exposure element over the exposure step, characterized in that, if a component of the intensity variation common to all time-dependent function of the intensity profiles of all exposure elements to be activated exists as a general intensity variation in an exposure step, this general intensity variation is carried out by controlling the intensity of the light source in accordance with the general intensity variation.
摘要:
The invention relates to a method for the construction of a shaped body from photopolymerizable material by using lithography-based generative production, in which a layer of liquid photopolymerizable material is defined on a production platform, and is polymerized in an exposure region having a predetermined contour, a further layer of photopolymerizable material is defined, the layer defined last is polymerized in an exposure region having a predetermined contour for the layer defined last, and the latter two steps are repeated until a shaped body having a predetermined shape has been formed by the sequence of cured layers with contours predetermined layer by layer, each exposure in an exposure region having a predetermined contour being carried out by controlled activation of individual exposure elements in a two-dimensional array of exposure elements, each exposure element being assigned an image element, wherein the exposure of the exposure region is carried out by a common light source and by a two-dimensional light intensity modulator which is illuminated by the light source and which has a grid of individually controllable intensity modulators, in such a way that each illuminated intensity modulator forms and exposure element that exposes an image element in the exposure region, wherein a two-dimensional matrix is compiled for each exposure step of a layer, each element of the matrix being assigned to an exposure element in the array of exposure elements and control instructions for this exposure element being obtained in the form of a time-dependent function which individually establishes the intensity profile of the radiation of the exposure element over the exposure step, characterized in that, if a component of the intensity variation common to all time-dependent function of the intensity profiles of all exposure elements to be activated exists as a general intensity variation in an exposure step, this general intensity variation is carried out by controlling the intensity of the light source in accordance with the general intensity variation.
摘要:
The invention relates to the use of a composite resin composition comprising (a) at least one polyreactive binder, (b) a first photopolymerization initiator having an absorption maximum at a wavelength of less than 400 nm, (c) a second photopolymerization initiator having an absorption maximum at a wavelength of at least 400 nm and (d) an absorber having an absorption maximum at a wavelength of less than 400 nm, for the stereolithographic production of a dental shaped part based on composite resin. The invention also relates to a process for the stereolithographic production of a dental shaped part and the use of the composite resin composition in this process.
摘要:
The invention relates to the use of a composite resin composition comprising (a) at least one polyreactive binder, (b) a first photopolymerization initiator having an absorption maximum at a wavelength of less than 400 nm, (c) a second photopolymerization initiator having an absorption maximum at a wavelength of at least 400 nm and (d) an absorber having an absorption maximum at a wavelength of less than 400 nm, for the stereolithographic production of a dental shaped part based on composite resin. The invention also relates to a process for the stereolithographic production of a dental shaped part and the use of the composite resin composition in this process.
摘要:
A device for processing of highly viscous photopolymerizable material for layer-by-layer generation of a shaped body comprises a vat including a bottom which is at least in certain areas thereof transparent, a build platform, an exposure unit for exposing a material layer formed between the lower side of the build platform and the vat bottom in a locally selective manner, a control unit in order to adapt the relative position of the build platform to the vat bottom after each exposure step for a layer, in order to successively build up the shaped body in the desired shape, and a moveably guided doctor blade arrangement including a drive unit for moving the doctor blade arrangement back and forth underneath the build platform. The doctor blade arrangement comprises two doctor blades spaced apart in movement direction, which doctor blades are moveable at a constant distance to the vat bottom along the bottom. The vat includes vat end walls such that the doctor blade leading in movement direction in each case moves towards one of the vat end walls. Between the two doctor blades a chamber is formed which is open at its lower side, wherein walls of the chamber include at least one opening extending through the wall in movement direction for forming an overflow channel, so that material piling up between the leading doctor blade and the facing vat end wall is pressed through they at least overflow channel into the chamber.
摘要:
A method and a device for processing light-polymerizable material for the assembly of a mold, utilizing a lithography-based generative manufacturing technique wherein a layer of a light-polymerizable material, the material being located in at least one trough (4) having a particularly light-transmissive, horizontal bottom (6), is polymerized by illumination on at least one horizontal platform (12), the platform having a prespecified geometry and projecting into a trough (4), in an illumination field, wherein the platform (12) is displaced vertically to form a subsequent layer, light-polymerizable material is then added to the most recently formed layer, and repetition of the foregoing steps leads to the layered construction of the mold in the desired form, which arises from the succession of layer geometries. The invention is characterized in that the trough (4) can be shifted horizontally to a supply position, and the supply device (8) brings light-polymerizable material at least to an illumination field of the trough bottom (6), before the at least one trough (4) is shifted to an illumination position in which the illumination field is located below the platform (12) and above the illumination unit (10), and illumination is carried out.
摘要:
The invention relates to a method for the construction of a shaped body from photopolymerizable material by using lithography-based generative production (rapid prototyping), in which a layer of liquid photopolymerizable material is defined on a production platform (1, 2, 3, 4), the layer is polymerized in an exposure region having a predetermined contour by exposure, a further layer of photopolymerizable material is defined on the polymerized layer, the layer defined last is polymerized by exposure in an exposure region having a predetermined contour for the layer defined last, and the latter two steps are repeated until a shaped body having a predetermined shape has been formed by the sequence of cured layers with contours predetermined layer by layer, wherein ink is applied onto at least one layer inside the predetermined contour, wherein the production platform is suspended moveably and wherein the production platform is brought, after the polymerization of a layer in a processing station for polymerizing a layer, by movement to an ink application station as a further processing station in which ink is applied position-selectively to the layer formed last, after which the production platform is moved again to the processing station for polymerizing a further layer, characterized in that the movement of the production platform between various processing stations is carried out by rotating a drum-shaped carrier which holds the production platform on its circumference, around a horizontal or vertical axis of rotation, wherein the processing stations are disposed distributed around the axis of rotation of the drum shaped carrier.