摘要:
What is proposed is a centrifugal droplet separator for separating liquid droplets out of a feed gas stream comprising them, with a vertical longitudinal axis and circular cross section, with a jacket (1) and with hoods (2) at the upper and lower ends of the jacket (1), with tangential supply (3) of the feed gas stream comprising liquid droplets at the jacket (1) and with an outlet stub (4) for the liquid separated out in the centrifugal droplet separator in the region of the lower hood (2), and with a gas outlet stub (7) for the gas stream cleaned in the centrifugal droplet separator in the region of the upper hood (2), wherein two, three or more inlet orifices (9) arranged symmetrically on the circumference of the upper hood (2) for tangential supply of cleaning liquid are provided in the same direction as the supply of the feed gas stream comprising liquid droplets.
摘要:
What is proposed is an apparatus for separating liquid droplets out of a feed gas stream comprising them comprising a delay vessel (1) for preliminary separation of some of the liquid droplets out of the feed gas stream under the action of gravity, with an inlet line (2) for the feed gas stream into the delay vessel (1) and an outlet line (3) for the gas stream which has been depleted of liquid droplets and flows out of the delay vessel (1), and tangential supply thereof into a centrifugal droplet separator (4), the outlet line (3) being arranged in the upper region of the delay vessel (1) and being spaced apart from the inlet line (2) to such an extent that the delay time of the gas stream in the delay vessel (1) is at a maximum, and with an outlet line (5) for the liquid separated in the delay vessel (1) at the base thereof,and wherein the centrifugal droplet separator (4) used is an axially symmetric apparatus with a vertical longitudinal axis and circular cross section, with a jacket and hoods at the upper and lower ends of the jacket, and wherein an outlet stub (6) for the liquid separated in the centrifugal droplet separator (4) is arranged in the region of the lower hood of the centrifugal droplet separator (4) and has such dimensions that it is immersed into the liquid standing at the base of the delay vessel (1) or into a liquid standing in a cup in the interior of the delay vessel (1), and with a gas outlet stub (7) at the upper end of the centrifugal droplet separator (4) for the gas stream purified further in the centrifugal droplet separator (4), and wherein both the supply of the gas stream depleted of liquid droplets from the delay vessel (1) via the outlet line (3) and the removal of the liquid separated in the centrifugal droplet separator (4) via line (6) into the delay vessel (1) are effected without the use of pumps and shutoff devices.
摘要:
An apparatus, for separating liquid droplets out of a feed gas stream, includes a delay vessel for preliminary separation of some of the liquid droplets out of the feed gas stream under gravity, with an inlet line for the feed gas stream and an outlet line for the gas stream which has been depleted of liquid droplets and which flows out of the delay vessel and a tangential supply thereof into a centrifugal droplet separator. The outlet line is arranged in the upper region of the delay vessel and spaced apart from the inlet line to such an extent that the delay time of the gas stream in the delay vessel is at a maximum, and with an outlet line for the liquid separated in the delay vessel at the base thereof.
摘要:
Described is a monolithic support member comprising channels with walls separating the channels and having a coating deposited thereon, the non-coated channels having a polygonal cross-section profile, wherein the mean thickness dC of the coating in a corner of said cross-section profile is smaller than or equal to the mean thickness dE of the coating on an edge of said cross-section profile plus 85 micrometer. Also described is a method for the preparation of such coated monolithic support member. Further described is the use of such coated monolithic support member as a catalytic article in automotive exhaust gas treatment.
摘要:
The invention relates to a monolithic support member comprising channels with walls separating the channels from each other and having a coating deposited thereon, the non-coated channels having a polygonal cross-section profile, wherein the mean thickness dC of the coating in a corner of said cross-section profile is smaller than or equal to the mean thickness dE of the coating on an edge of said cross-section profile plus 85 micrometer; and further relates to a method for the preparation of such coated monolithic support member, the method comprising (i) providing a suspension having a viscosity in the range of from 0.5 to 100 mPas and having a solid content in the range of from 1 to 40 wt.-%, (ii) dispersing the suspension into a gas stream to obtain a gas stream comprising droplets having a droplet size in the range of from d10 greater than or equal to 1 micrometer to d90 smaller than or equal to 100 micrometer; and (iii) directing said gas stream comprising said droplet towards the monolithic support member along the axial direction of the channels of the support; and still further relates to the use of such coated monolithic support member, in particular as catalytic article in the automotive exhaust gas treatment.
摘要:
A method for producing nanoscale organic solid particles is proposed, starting from the corresponding sublimable organic solid as raw material, in the form of particles having an average particle diameter in the range of from 1 μm to 10 mm, which are dispersed in a carrier gas so as to obtain a dispersion, which is relaxed in a convergent nozzle, which is followed by an expansion chamber, and wherein openings are provided rotationally symmetrically about the midaxis of the expansion chamber in the wall of the expansion chamber which comprises the product outlet opening, through which openings a secondary gas flow is injected comprising an inert gas carrier and molecules, ions or nanoscale particles contained in molecularly disperse form therein, which are different from the raw material and which have an average particle diameter that is less than the average particle diameter of the product.
摘要:
A method for producing nanoscale organic solid particles is proposed, starting from the corresponding sublimable organic solid as raw material, in the form of particles having an average particle diameter in the range of from 1 μm to 10 mm, which are dispersed in a carrier gas so as to obtain a dispersion, which is relaxed in a convergent nozzle, which is followed by an expansion chamber, and wherein openings are provided rotationally symmetrically about the midaxis of the expansion chamber in the wall of the expansion chamber which comprises the product outlet opening, through which openings a secondary gas flow is injected comprising an inert gas carrier and molecules, ions or nanoscale particles contained in molecularly disperse form therein, which are different from the raw material and which have an average particle diameter that is less than the average particle diameter of the product.
摘要:
A method is proposed for characterizing a totality of particles. The method can be used in particular for characterizing microparticular or nanoparticular aerosols. The method comprises the following steps: a) in a classification step, a class of the totality is selected, wherein the particles of the selected class have a prespecified mobility dm; b) in a counting step, a number N of the particles of the selected class is determined; c) in a charge determination step, a charge Q of the particles of the selected class is determined; and d) in an evaluation step, at least one morphological parameter is determined from the charge Q, the number N and the mobility dm, wherein the morphological parameter comprises at least one item of information about an agglomerate state of the particles.
摘要:
A method is proposed for characterizing a totality of particles (318). The method can be used in particular for charactering microparticular or nanoparticular aerosols. The method comprises the following steps: a) in a classification step, a class of the totality is selected, wherein the particles (318) of the selected class have a prespecified mobility dm; b) in a counting step, a number N of the particles (318) of the selected class is determined; c) in a charge determination step, a charge Q of the particles (318) of the selected class is determined; and d) in an evaluation step, at least one morphological parameter is determined from the charge Q, the number N and the mobility dm, wherein the morphological parameter comprises at least one item of information about an agglomerate state of the particles (318).