Abstract:
A phase analyzer includes a principal component analysis section that performs principal component analysis on elemental map data that represents an intensity or concentration distribution corresponding to each element to calculate a principal component score corresponding to each unit area of the elemental map data, a scatter diagram generation section that plots the calculated principal component score to generate a scatter diagram of the principal component score, a peak position detection section that detects a peak position from the scatter diagram, a clustering section that calculates a distance between each point and each peak position within the scatter diagram, and classifies each point within the scatter diagram into a plurality of groups based on the distance, and a phase map generation section that generates a phase map based on classification results of the clustering section.
Abstract:
A scatter diagram display device includes a principal component analysis section that performs principal component analysis on intensity or concentration map data that represents each element, a priority level setting section that sets a priority level to each element based on the results of the principal component analysis performed by the principal component analysis section, and a display control section that performs a control process that arranges a plurality of scatter diagrams generated by combining each element based on the priority level that has been set to each element by the priority level setting section, and displays the plurality of scatter diagrams on a display section.
Abstract:
A phase analyzer includes a principal component analysis section that performs principal component analysis on elemental map data that represents an intensity or concentration distribution corresponding to each element to calculate a principal component score corresponding to each unit area of the elemental map data, a scatter diagram generation section that plots the calculated principal component score to generate a scatter diagram of the principal component score, a peak position detection section that detects a peak position from the scatter diagram, a clustering section that calculates a distance between each point and each peak position within the scatter diagram, and classifies each point within the scatter diagram into a plurality of groups based on the distance, and a phase map generation section that generates a phase map based on classification results of the clustering section.
Abstract:
A scatter diagram display device includes a principal component analysis section that performs principal component analysis on intensity or concentration map data that represents each element, a priority level setting section that sets a priority level to each element based on the results of the principal component analysis performed by the principal component analysis section, and a display control section that performs a control process that arranges a plurality of scatter diagrams generated by combining each element based on the priority level that has been set to each element by the priority level setting section, and displays the plurality of scatter diagrams on a display section.
Abstract:
A particle analysis instrument is offered which can make a measurement in a shorter time than heretofore. The particle analysis instrument (100) is used to analyze a sample (S) containing plural particles by measuring the sample over plural fields of view. The instrument (100) includes a measuring section (10) for scanning primary rays (EB) over the sample (S) and detecting a signal emanating from the sample (S), a particle area totalizing portion (222) for finding the area of particles for each field of view from the results of the measurement made by the measuring section (10) and summing up such areas of particles for all of the fields of view to find a total area of particles, and a decision portion (226) for making a decision as to whether the measurement process should be ended, based on the ratio of the total area of particles to an area of the sample (S) measured to obtain the total area of particles.
Abstract:
A particle analysis instrument is offered which can make a measurement in a shorter time than heretofore. The particle analysis instrument (100) is used to analyze a sample (S) containing plural particles by measuring the sample over plural fields of view. The instrument (100) includes a measuring section (10) for scanning primary rays (EB) over the sample (S) and detecting a signal emanating from the sample (S), a particle area totalizing portion (222) for finding the area of particles for each field of view from the results of the measurement made by the measuring section (10) and summing up such areas of particles for all of the fields of view to find a total area of particles, and a decision portion (226) for making a decision as to whether the measurement process should be ended, based on the ratio of the total area of particles to an area of the sample (S) measured to obtain the total area of particles.