Abstract:
The techniques described are directed to providing mass withdrawal of media access control (MAC) routes for network devices in an Ethernet virtual private network data center interconnect (EVPN DCI). MAC routes to reach the learned MAC addresses are stored in routing tables with corresponding top-of-rack Ethernet segment identifier (TOR-ESI) values that represent the Ethernet segments from where the MAC addresses were learned. A provider edge (PE) network device may configure and advertise a virtual Ethernet segment identifier (vESI) that includes a plurality of TOR-ESI values. As Ethernet segments of the data center become unavailable, the corresponding TOR-ESI values may be withdrawn from the vESI to form an updated vESI. In this way, MAC routes having a TOR-ESI value that was withdrawn from the vESI may be removed from the routing tables in each of the network devices.
Abstract:
In general, techniques enable an intermediate router to perform node protection for one or more other PE routers operably coupled to the intermediate router in active-active mode in an EVPN. The techniques may include configuring the intermediate router, which is positioned within an a service provider network between a remote provide edge router and at least two provider edge (PE) routers operating in active-active mode in an Ethernet Virtual Private Network (EVPN), to operate in a passive mode in which the intermediate router detects Ethernet Auto-Discovery (AD) routes without performing layer two (L2) address learning for the EVPN. The techniques may include installing a primary route to a protected router and a backup route from the intermediate router to a PE router other than the protected router, and in response to a link failure, forwarding network traffic using the backup route without requiring reprogramming the forwarding unit.
Abstract:
In some examples, a method includes receiving, by a first provider edge (PE) network device, an egress protection label that is advertised by a second PE network device, wherein each of the first and second PE network devices are included in an Ethernet segment, wherein the first PE network device is a designated forwarder for BUM network packets in the Ethernet segment, and wherein a CE network device is multi-homed to the first and second PE network devices; in response to detecting a link failure, configuring forwarding information of the first PE network device to apply the egress protection label to the BUM network packets received by the first PE network device and forward the BUM network packets to the second PE network device; and in response to receiving the BUM network packets, forwarding the BUM network packets with the egress protection label to the second PE network device.
Abstract:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
Abstract:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
Abstract:
A first network device permits a bidirectional forwarding detection (BFD) session with a second network device. The first network device is a designated forwarder for a third network device, a first link is provided between the first network device and the third network device, the second network device is a backup designated forwarder for the third network device, a second link is provided between the second network device and the third network device. The first network device detects a link failure associated with the first link between the first network device and the third network device, and provides, via the BFD session, a BFD message to the second network device. The BFD message includes an indication of the link failure, and the BFD message is to cause the second network device to be a new designated forwarder for the third network device.
Abstract:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
Abstract:
In one example, a first routing device of an Ethernet virtual private network (EVPN) is multihomed to a customer edge (CE) routing device with a second routing device. The first routing device includes one or more network interfaces configured to send and receive packets. The first routing device also includes one or more processors configured to receive, via the one or more network interfaces, a first packet from the CE routing device including multicast join information, update multicast state information of the first routing device using the multicast join information from the first packet, and send, via the one or more network interfaces, a second packet including data representative of the multicast join information to the second routing device to synchronize multicast state information of the second routing device with the multicast state information of the first routing device.
Abstract:
The techniques described are directed to providing mass withdrawal of media access control (MAC) routes for network devices in an Ethernet virtual private network data center interconnect (EVPN DCI). MAC routes to reach the learned MAC addresses are stored in routing tables with corresponding top-of-rack Ethernet segment identifier (TOR-ESI) values that represent the Ethernet segments from where the MAC addresses were learned. A provider edge (PE) network device may configure and advertise a virtual Ethernet segment identifier (vESI) that includes a plurality of TOR-ESI values. As Ethernet segments of the data center become unavailable, the corresponding TOR-ESI values may be withdrawn from the vESI to form an updated vESI. In this way, MAC routes having a TOR-ESI value that was withdrawn from the vESI may be removed from the routing tables in each of the network devices.