摘要:
A repair system including a closure prosthesis and deployment device, and associated methods for repairing any imperfection including a flaw, hole, tear, bulge, or, in some cases, a deliberate cut or incision in any tissue including an intervertebral disc. The prosthesis has first and second side portions with a connecting central portion, and is designed to span an imperfection with opposite ends positioned on opposite sides of the imperfection. The prosthesis may include anchoring features including barbs and/or members that extend transversely. The deployment device can include a canula for positioning the prosthesis near the imperfection, and, in some cases, a mechanism that may cause the two sides of the prosthesis to be deployed in a specific order.
摘要:
A split-gate flash memory cell having a three-dimensional source capable of three-dimensional coupling with the floating gate of the cell, as well as a method of forming the same are provided. This is accomplished by first forming an isolation trench, lining it with a conformal oxide, then filling with an isolation oxide and then etching the latter to form a three-dimensional coupling region in the upper portion of the trench. A floating gate is next formed by first filling the three-dimensional region of the trench with polysilicon and etching it. The control gate is formed over the floating gate with an intervening inter-poly oxide. The floating gate forms legs extending into the three-dimensional coupling region of the trench thereby providing a three-dimensional coupling with the source which also assumes a three-dimensional region. The leg or the side-wall of the floating gate forming the third dimension provides the extra area through which coupling between the source and the floating gate is increased. In this manner, a higher coupling ratio is achieved without an increase in the cell size while at the same time alleviating the punchthrough and junction break-down of source region by sharing gate voltage along the side-wall.
摘要:
A method of making the selection gate in a split-gate flash EEPROM cell forms a selection gate on a trench sidewall of a semiconductor substrate to minimize the sidewise dimension of the selection gate and to maintain the channel length. The disclosed method includes the steps of: forming a trench on a semiconductor substrate on one side of a suspending gate structure; forming an inter polysilicon dielectric layer on the sidewall of the suspending gate structure and the trench; and forming a polysilicon spacer on the inter polysilicon dielectric layer as the selection gate. Such a split-gate flash EEPROM cell can produce ballistic hot electrons, improving the data writing efficiency and lowering the writing voltage.
摘要:
A method is disclosed for forming a split-gate flash memory cell where the floating gate of the cell is self-aligned to a shallow trench isolation (STI), which in turn makes it self-aligned to source and to word line. This will advantageously affect a shrinkage in the size of the memory cell. In a first embodiment, the close self-alignment is made possible through a new use of an anti-reflective coating (ARC) in the various process steps of the making of the cell. In the second embodiment, a low-viscosity material is used in such a manner so as to enable self-alignment of the floating gate to the STI in a simple way.
摘要:
There is presented an improved method of fabricating an EEPROM device with a split gate. In the method, a silicon substrate is provided having spaced and parallel recessed oxide regions that isolate component regions where the oxide regions project above the top surface of the substrate. A thin gate oxide is formed on the substrate, and a first conformal layer is deposited over the gate oxide and projecting oxide regions. The substrate is then chemical-mechanically polished to remove the projections of polysilicon over the oxide regions. A silicon nitride layer is deposited on the resultant planar surface of the polysilicon, and elongated openings formed that will define the position of the floating gates that are perpendicular to the oxide regions. The exposed polysilicon in the openings in the silicon nitride are oxidized down to at least the level of the underlying silicon oxide regions, and the silicon nitride layer removed. The polysilicon layer is then removed using the silicon oxide layer as an etch barrier, and the edge surfaces of the resulting polysilicon floating gates oxidized. A second polysilicon layer is deposited on the substrate and elongated word lines formed that are parallel and partially overlapping the floating gates. Source lines are formed in the substrate, and gate lines are formed that overlie the floating gates.
摘要:
A split-gate flash memory cell having a three-dimensional source capable of three-dimensional coupling with the floating gate of the cell, as well as a method of forming the same are provided. This is accomplished by first forming an isolation trench, lining it with a conformal oxide, then filling with an isolation oxide and then etching the latter to form a three-dimensional coupling region in the upper portion of the trench. A floating gate is next formed by first filling the three-dimensional region of the trench with polysilicon and etching it. The control gate is formed over the floating gate with an intervening inter-poly oxide. The floating gate forms legs extending into the three-dimensional coupling region of the trench thereby providing a three-dimensional coupling with the source which also assumes a three-dimensional region. The leg or the side-wall of the floating gate forming the third dimension provides the extra area through which coupling between the source and the floating gate is increased. In this manner, a higher coupling ratio is achieved without an increase in the cell size while at the same time alleviating the punchthrough and junction break-down of source region by sharing gate voltage along the side-wall.
摘要:
A method of making the selection gate in a split-gate flash EEPROM cell forms a selection gate on a trench sidewall of a semiconductor substrate to minimize the sidewise dimension of the selection gate and to maintain the channel length. The disclosed method includes the steps of: forming a trench on a semiconductor substrate on one side of a suspending gate structure; forming an inter polysilicon dielectric layer on the sidewall of the suspending gate structure and the trench; and forming a polysilicon spacer on the inter polysilicon dielectric layer as the selection gate. Such a split-gate flash EEPROM cell can produce ballistic hot electrons, improving the data writing efficiency and lowering the writing voltage.
摘要:
A method of making the selection gate in a split-gate flash EEPROM cell forms a selection gate on a trench sidewall of a semiconductor substrate to minimize the sidewise dimension of the selection gate and to maintain the channel length. The disclosed method includes the steps of: forming a trench on a semiconductor substrate on one side of a suspending gate structure; forming an inter polysilicon dielectric layer on the sidewall of the suspending gate structure and the trench; and forming a polysilicon spacer on the inter polysilicon dielectric layer as the selection gate. Such a split-gate flash EEPROM cell can produce ballistic hot electrons, improving the data writing efficiency and lowering the writing voltage.
摘要:
A split-gate flash memory cell having a three-dimensional source capable of three-dimensional coupling with the floating gate of the cell, as well as a method of forming the same are provided. This is accomplished by first forming an isolation trench, lining it with a conformal oxide, then filling with an isolation oxide and then etching the latter to form a three-dimensional coupling region in the upper portion of the trench. A floating gate is next formed by first filling the three-dimensional region of the trench with polysilicon and etching it. The control gate is formed over the floating gate with an intervening inter-poly oxide. The floating gate forms legs extending into the three-dimensional coupling region of the trench thereby providing a three-dimensional coupling with the source which also assumes a three-dimensional region. The leg or the side-wall of the floating gate forming the third dimension provides the extra area through which coupling between the source and the floating gate is increased. In this manner, a higher coupling ratio is achieved without an increase in the cell size while at the same time alleviating the punchthrough and junction break-down of source region by sharing gate voltage along the side-wall.
摘要:
A repair system including a closure prosthesis and deployment device, and associated methods for repairing any imperfection including a flaw, hole, tear, bulge, or, in some cases, a deliberate cut or incision in any tissue including an intervertebral disc. The prosthesis has first and second side portions with a connecting central portion, and is designed to span an imperfection with opposite ends positioned on opposite sides of the imperfection. The prosthesis may include anchoring features including barbs and/or members that extend transversely. The deployment device can include a canula for positioning the prosthesis near the imperfection, and, in some cases, a mechanism that may cause the two sides of the prosthesis to be deployed in a specific order.