摘要:
The present invention provides a method of manufacturing an aromatic polyamide composite membrane comprising: coating an aqueous solution containing polyfunctional aromatic amine to a porous polymer substrate; and reacting the coated substrate with an organic solution containing polyfunctional aromatic acyl halide to lead to interfacial condensation polymerization between the polyfunctional aromatic amine and the polyfunctional aromatic acyl halide so that the reaction product resulting from the interfacial condensation polymerization is coated on the surface of the substrate, characterized in that either of the aqueous solution containing polyfunctional aromatic amine or the organic solution containing polyfunctional aromatic acyl halide has dendritic polymer as one of polyfunctional compounds added thereto. The resulting aromatic polyamide composite membrane which includes dendrimer as polyfunctional compound, exhibits high salt rejection rate and water flux.
摘要:
Disclosed is a pressurized hollow fiber membrane module that exhibits improved durability without deterioration in packing density and permeation flux. The pressurized hollow fiber membrane module includes a composite hollow fiber membrane comprising a tubular braid woven by yarns and a polymer film on the outer surface of the tubular braid. At least one of the yarns comprises a small-fineness filament and a medium-fineness filament. The small-fineness filament comprises first monofilaments having a fineness of 0.01 to 0.4 denier, the medium-fineness filament comprises second monofilaments having a fineness higher than 0.4 and lower than 3, and a ratio of thickness of the tubular braid to outer diameter thereof is 15 to 35%.
摘要:
The present invention relates to polymer membranes for separating olefins from paraffins which have the similar molecular size and close boiling point. More particularly, it relates to a silver salt-containing facilitated transport membrane for olefin separation, and also a method for producing the same. An object of the present invention is to provide a silver salt-containing facilitated transport membrane for olefin separation having improved stability, and also a method for preparing the same, which exhibits no deterioration in membrane performance even when operated for an extended period of time. The facilitated transport membrane for olefin/paraffin separation of the present invention comprises a polymer, a silver salt, and a phthalate compound represented by the following formula (1) wherein R denotes an alkyl group of 2 to 8 carbon atoms or a phenyl group.
摘要:
The present invention relates to polymer membranes for separating olefins from paraffins which have the similar molecular size and close boiling point. More particularly, it relates to a silver salt-containing facilitated transport membrane for olefin separation, and also a method for producing the same. An object of the present invention is to provide a silver salt-containing facilitated transport membrane for olefin separation having improved stability, and also a method for preparing the same, which exhibits no deterioration in membrane performance even when operated for an extended period of time. The facilitated transport membrane for olefin/paraffin separation of the present invention comprises a polymer, a silver salt, and a phthalate compound represented by the following formula (1) wherein R denotes an alkyl group of 2 to 8 carbon atoms or a phenyl group.
摘要:
The present disclosure relates to a polymer electrolyte membrane having a construction wherein an ionomer is charged in pores of a nanoweb having a high melting point, being insoluble in an organic solvent and having excellent pore characteristics, under optimum conditions. Therefore, an overall thickness of the electrolyte membrane may be reduced, thereby attaining advantages such as decrease in ohmic loss, reduction of material costs, excellent heat resistance, low thickness expansion rate which in turn prevents proton conductivity from being deteriorated over a long term. The polymer electrolyte membrane of the present invention comprises a porous nanoweb having a melting point of 300□ or more and being insoluble in an organic solvent of NMP, DMF, DMA, or DMSO at room temperature; and an ionomer which is charged in pores of the porous nanoweb and contains a hydrocarbon material soluble in the organic solvent at room temperature.
摘要:
The present disclosure relates to a polymer electrolyte membrane having a construction wherein an ionomer is charged in pores of a nanoweb having a high melting point, being insoluble in an organic solvent and having excellent pore characteristics, under optimum conditions. Therefore, an overall thickness of the electrolyte membrane may be reduced, thereby attaining advantages such as decrease in ohmic loss, reduction of material costs, excellent heat resistance, low thickness expansion rate which in turn prevents proton conductivity from being deteriorated over a long term. The polymer electrolyte membrane of the present invention comprises a porous nanoweb having a melting point of 300□ or more and being insoluble in an organic solvent of NMP, DMF, DMA, or DMSO at room temperature; and an ionomer which is charged in pores of the porous nanoweb and contains a hydrocarbon material soluble in the organic solvent at room temperature.