摘要:
A waveguide structure includes a SOI substrate. A core structure is formed on the SOI substrate comprising a plurality of multilayers having alternating or aperiodically distributed thin layers of either Si-rich oxide (SRO), Si-rich nitride (SRN) or Si-rich oxynitride (SRON). The multilayers are doped with a rare earth material so as to extend the emission range of the waveguide structure to the near infrared region. A low index cladding includes conductive oxides to act as electrodes.
摘要:
A method for enhancing photoluminescence includes providing a film disposed over a substrate, the film including at least one of a semiconductor and a dielectric material. Light emission may be activated by thermal annealing post growth treatments when thin film layers of SiO2 and SiNx or Si-rich oxide are used. A first annealing step is performed at a first temperature in a processing chamber or annealing furnace; and, thereafter, a second annealing step is performed at a second temperature in the processing chamber or annealing furnace. The second temperature is greater than the first temperature, and the photoluminescence of the film after the second annealing step is greater than the photoluminescence of the film without the first annealing step.
摘要:
A fabrication method and materials produce high quality aperiodic photonic structures. Light emission can be activated by thermal annealing post growth treatments when thin film layers of SiO2 and SiNx or Si-rich oxide are used. From these aperiodic structures, that can be obtained in different vertical and planar device geometries, the presence of aperiodic order in a photonic device provides strong group velocity reduction (slow photons), enhanced light-matter interaction, light emission enhancement, gain enhancement, and/or nonlinear optical properties enhancement.
摘要翻译:制造方法和材料产生高质量的非周期光子结构。 当使用SiO 2和SiN x 3或富Si氧化物的薄膜层时,可以通过生长后处理进行热退火来激发发光。 从这些非周期结构可以在不同的垂直和平面器件几何形状中获得,光子器件中非周期性顺序的存在提供了强的组速度降低(慢光子),增强的光物质相互作用,光发射增强,增益增强和 /或非线性光学性能增强。
摘要:
A method for enhancing photoluminescence includes providing a film disposed over a substrate, the film including at least one of a semiconductor and a dielectric material. A first annealing step is performed at a first temperature in a processing chamber or annealing furnace; and, thereafter, a second annealing step is performed at a second temperature in the processing chamber or annealing furnace. The second temperature is greater than the first temperature, and the photoluminescence of the film after the second annealing step is greater than the photoluminescence of the film without the first annealing step.
摘要:
An optical amplifier on a silicon platform includes a first doped device layer and a second doped device layer. A gain medium is positioned between the first and second doped device layers. The gain medium comprises extrinsic gain materials so as to substantially confine in the gain medium a light signal and allow the optical amplifier to be electrically or optically pumped.
摘要:
An optical amplifier on a silicon platform includes a first doped device layer and a second doped device layer. A gain medium is positioned between the first and second doped device layers. The gain medium comprises extrinsic gain materials so as to substantially confine in the gain medium a light signal and allow the optical amplifier to be electrically or optically pumped.
摘要:
An optical amplifier on a silicon platform includes a first doped device layer and a second doped device layer. A gain medium is positioned between the first and second doped device layers. The gain medium comprises extrinsic gain materials so as to substantially confine in the gain medium a light signal and allow the optical amplifier to be electrically or optically pumped.
摘要:
A microphotonic light source includes an optical pump and a plurality of waveguides that distribute optical pump power of the optical pump. At least one Erbium-doped laser ring is coupled to at least one of the waveguides so as to match the resonance condition of the optical pump.
摘要:
Defined nanoparticle cluster arrays (NCAs) with total lateral dimensions of up to 25.4 μm by 25.4 μm have been fabricated on top of a 10 nm thin gold film using template guided self-assembly. This approach provides precise control of the structural parameters in the arrays allowing a systematic variation of the average number of nanoparticles in the clusters (n) and the edge to edge separation (Λ) between 1
摘要:
The present disclosure relates to biophotonic sensors. An example of a biophotonic sensor may be an apparatus for analyzing a sample. The apparatus may include a substrate, aperiodic nanostructured protrusions disposed on the substrate, and a silk material deposited between the protrusions.