摘要:
An optical amplifier on a silicon platform includes a first doped device layer and a second doped device layer. A gain medium is positioned between the first and second doped device layers. The gain medium comprises extrinsic gain materials so as to substantially confine in the gain medium a light signal and allow the optical amplifier to be electrically or optically pumped.
摘要:
An optical amplifier on a silicon platform includes a first doped device layer and a second doped device layer. A gain medium is positioned between the first and second doped device layers. The gain medium comprises extrinsic gain materials so as to substantially confine in the gain medium a light signal and allow the optical amplifier to be electrically or optically pumped.
摘要:
A fiber laser or fiber amplifier uses resonant pumping of the gain medium by providing a pump resonator that establishes a resonator cavity at the pump wavelength which includes the pumped gain medium. The pump resonator may be of a distributed feedback (DFB) or a distributed Bragg reflector (DBR) type construction, and may be combined with signal reflection apparatus of either DFB or DBR type construction that provides oscillation of the desired laser output wavelength. If used without a signal reflection apparatus, the invention may be operated as a resonant pumped fiber amplifier. A resonant pumped laser may use a wavelength stabilized pump source to maximize pumping efficiency, the stabilization being provided by optical feedback.
摘要:
A waveguide DBR laser or waveguide DBR laser array may be comprised of a semiconductor gain element, or a series of semiconductor gain elements, in combination with a waveguide grating functioning as a resonant cavity end reflector for lasing operation comprising either an optical fiber having a fiber grating (fiber DBR laser) or a planar waveguide (planar waveguide DBR laser). The gain element may be comprised of a laser diode which has high efficient AR coating on its front facet so that it functions as a modulated gain element in a resonant cavity established between its rear HR facet and the grating formed in the external waveguide. Disclosed are ways to form this resonant cavity so that gain element modulation rates can be carried out in excess of 2 Gb/sec with suppression of longitudinal mode hops and/or with trimming to compensate for wavelength changes, rendering the waveguide DBR laser or waveguide DBR laser array highly suitable for WDM transmitter, dense WDM transmission systems and other communications applications.
摘要:
An apparatus and technique for providing isolation for a signal source utilizing two or more modulators is described. In particular, the apparatus generates a timed sequence of "open gates" that are synchronized to the data signal which permit transmission in a forward direction, and which attenuate a reverse direction signal. Another embodiment attenuates primarily reflected light signals by utilizing a passive waveguide and a modulator. The passive waveguide provides a propagation delay such that signals reflected from its end facet are attenuated by the modulator. The apparatus is suitable for use as an isolator for a light source in a high-speed optical fiber data transmission system.
摘要:
Full duplex lightwave communications is achieved in a diplex transceiver realized in a semiconductor photonic integrated circuit having an inline interconnecting waveguide integral with the transmitting and receiving portions of the transceiver. Semiconductor lasers and detectors operating in different wavelength regimes permit diplex or wavelength-division-multiplexed operation. In the transceiver, lightwave signals from the laser propagate through the laser without interfering with the laser operation or the lightwave signals being generated.
摘要:
A lightwave communication system is disclosed in which an integrated receiver is realized as a distributed Bragg reflector (MQW-DBR) laser structure biased at or below threshold. The receiver functions simultaneously as a tunable filter, optical amplifier, photodetector, and, if desired, as an FSK discriminator. It is also disclosed that the lightwave receiver also is capable of half duplex operation as a lightwave transmitter using the same DBR laser structure. The disclosed receiver eliminates complex coupling of the many different element realized by the integrated, multifunction structure.
摘要:
Adiabatic mode control and structural reproducibility are achieved by a tapered semiconductor waveguide structure wherein semiconductor guiding layers are interleaved with stop-etch layers and each guiding layer extends further along the propagation axis of the waveguide further than the guiding layer immediately adjacent thereabove to create a staircase-like core or guiding structure. Cladding regions of appropriate semiconductor material having a lower index of refraction than the tapered core structure may be added to completely surround the tapered guiding structure. The profile of the tapered structure is realizable as any desired staircase-like shape such as linear, parabolic, exponential or the like. Additional layers of higher index of refraction semiconductor material may be included in the cladding region to permit additional beam shaping of the expanded spatial mode propagating along the tapered waveguide.Photolithographic masks defining successively larger exposed areas are aligned, deposited over the waveguide structure, and then removed following each etching step. Material selective etching techniques are employed to remove exposed (unmasked) portions of guiding layers. In sequence, the exposed, formerly underlying portions of the stop-etch layers are then removed using material selective etching. Iteration of the above process steps permits a tapered waveguide structure to be defined.
摘要:
A grating coupler is combined with a quantum well index modulator and an optical waveguide to alter the reverse or forward coupling characteristics between two different propagation modes of the system.
摘要:
A planar silicon dioxide waveguide with low loss for the TE mode has been built on a silicon wafer by separating the waveguide from the substrate with a relatively thin layer of polycrystalline silicon and a layer of silicon dioxide having a combined thickness less than that of the waveguide. The separating layers provide a high antiresonant reflectivity which is operative over a broad range of wavelengths.