摘要:
A fabrication method and materials produce high quality aperiodic photonic structures. Light emission can be activated by thermal annealing post growth treatments when thin film layers of SiO2 and SiNx or Si-rich oxide are used. From these aperiodic structures, that can be obtained in different vertical and planar device geometries, the presence of aperiodic order in a photonic device provides strong group velocity reduction (slow photons), enhanced light-matter interaction, light emission enhancement, gain enhancement, and/or nonlinear optical properties enhancement.
摘要翻译:制造方法和材料产生高质量的非周期光子结构。 当使用SiO 2和SiN x 3或富Si氧化物的薄膜层时,可以通过生长后处理进行热退火来激发发光。 从这些非周期结构可以在不同的垂直和平面器件几何形状中获得,光子器件中非周期性顺序的存在提供了强的组速度降低(慢光子),增强的光物质相互作用,光发射增强,增益增强和 /或非线性光学性能增强。
摘要:
A thin film photovoltaic cell is provided having a substrate; a back contact provided on the substrate; a p-type semiconductor absorber layer provided on the back contact; a n-type semiconductor layer provided on the p-type semiconductor absorber layer; a dielectric organic material layer provided on the n-type semiconductor layer; a transparent conductive film provided on the dielectric organic material layer; and, optionally, an antireflective layer provided on the transparent conductive film. Also provided is a method of manufacturing a thin film photovoltaic cell.
摘要:
A method for enhancing photoluminescence includes providing a film disposed over a substrate, the film including at least one of a semiconductor and a dielectric material. A first annealing step is performed at a first temperature in a processing chamber or annealing furnace; and, thereafter, a second annealing step is performed at a second temperature in the processing chamber or annealing furnace. The second temperature is greater than the first temperature, and the photoluminescence of the film after the second annealing step is greater than the photoluminescence of the film without the first annealing step.
摘要:
Disclosed is a method for fabricating a smoothly surfaced GaN substrate. A GaN substrate is polished with diamond slurries and then, with boron carbide plates. The irreversible damaged layer which is caused by the mechanical polishing is removed by reactive ion etching, after which the GaN substrate is thermally treated to revive the recoverable damaged layer which is owed to the reactive ion etching. The resulting GaN substrate has a sufficiently smooth surface to allow subsequent thin films of high quality to grow thereon. Based on the GaN substrate of the present invention, blue light elements with excellent properties can be fabricated.
摘要:
A waveguide structure includes a SOI substrate. A core structure is formed on the SOI substrate comprising a plurality of multilayers having alternating or aperiodically distributed thin layers of either Si-rich oxide (SRO), Si-rich nitride (SRN) or Si-rich oxynitride (SRON). The multilayers are doped with a rare earth material so as to extend the emission range of the waveguide structure to the near infrared region. A low index cladding includes conductive oxides to act as electrodes.
摘要:
A method for enhancing photoluminescence includes providing a film disposed over a substrate, the film including at least one of a semiconductor and a dielectric material. Light emission may be activated by thermal annealing post growth treatments when thin film layers of SiO2 and SiNx or Si-rich oxide are used. A first annealing step is performed at a first temperature in a processing chamber or annealing furnace; and, thereafter, a second annealing step is performed at a second temperature in the processing chamber or annealing furnace. The second temperature is greater than the first temperature, and the photoluminescence of the film after the second annealing step is greater than the photoluminescence of the film without the first annealing step.