摘要:
Disclosed is AA′ graphite with a new stacking feature of graphene, and a fabrication method thereof. Graphene is stacked in the sequence of AA′ where alternate graphene layers exhibiting the AA′ stacking are translated by a half hexagon (1.23 Å). AA′ graphite has an interplanar spacing of about 3.44 Å larger than that of the conventional AB stacked graphite (3.35 Å) that has been known as the only crystal of pure graphite. This may allow the AA′ stacked graphite to have unique physical and chemical characteristics.
摘要:
Disclosed is AA′ graphite with a new stacking feature of graphene, and a fabrication method thereof. Graphene is stacked in the sequence of AA′ where alternate graphene layers exhibiting the AA′ stacking are translated by a half hexagon (1.23 Å). AA′ graphite has an interplanar spacing of about 3.44 Å larger than that of the conventional AB stacked graphite (3.35 Å) that has been known as the only crystal of pure graphite. This may allow the AA′ stacked graphite to have unique physical and chemical characteristics.
摘要:
There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
摘要:
The present invention relates to a combustion reactor for nanopowders, a synthesis apparatus for nanopowders using the combustion reactor, and a method of controlling the synthesis apparatus. The combustion reactor for nanopowders comprises an oxidized gas supply nozzle connected to an oxidized gas tube; a gas supply unit supplying a fuel gas and a precursor gas; and a reaction nozzle forming concentricity on an inner wall of the oxidized gas supply nozzle to be connected to the gas supply unit and having an inlet opening for supplying an oxidized gas disposed at a region adjacent to a jet orifice for spraying flames. In the present invention, it is possible to precisely control the stability of flames, the uniform temperature distribution of flames and the temperature of flames that affect the properties of nanopowders, and the deposition of oxide in the combustion reactor is prevented to thus enable a continuous and uniform reaction for a long time, thereby enabling an economic and efficient synthesis of nanopowders.
摘要:
The present invention relates to a combustion reactor for nanopowders, a synthesis apparatus for nanopowers using the combustion reactor, and a method of controlling the synthesis apparatus. The combustion reactor for nanopowders comprises an oxidized gas supply nozzle connected to an oxidized gas tube; a gas supply unit supplying a fuel gas and a precursor gas; and a reaction nozzle forming concentricity on an inner wall of the oxidized gas supply nozzle to be connected to the gas supply unit and having an inlet opening for supplying an oxidized gas disposed at a region adjacent to a jet orifice for spraying flames. In the present invention, it is possible to precisely control the stability of flames, the uniform temperature distribution of flames and the temperature of flames that affect the properties of nanopowders, and the deposition of oxide in the combustion reactor is prevented to thus enable a continuous and uniform reaction for a long time, thereby enabling an economic and efficient synthesis of nanopowders.
摘要:
In a metal oxide nanoparticle and a synthetic method thereof, and in particular to maghemite (γ-Fe2O3) nanoparticles usable as a superhigh density magnetic recording substance by having good shape anisotropy and magnetic characteristics, hematite (α-Fe2O3) nanoparticles usable as a precursor to the maghemite or a catalyst, maghemite and hematite-mixed nanoparticles and a synthetic method thereof, the method for synthesizing metal oxide nanoparticles includes forming a reverse micelle solution by adding distilled water, a surfactant and a solvent to metallic salt not less than trivalent, precipitating and separating gel type amorphous metal oxide particles by adding proton scavenger to the reverse micelle solution; adjusting a molar ratio of metal oxide to the surfactant by washing the gel type amorphous metal oxide particles with a polar solvent; and crystallizing metal oxide nanoparticles through heating or reflux after dispersing the gel type amorphous metal oxide particles in a non-polar solvent having a high boiling point.
摘要翻译:在金属氧化物纳米颗粒及其合成方法中,特别涉及可用作超高密度磁记录物质的磁赤铁矿(γ-Fe 2 O 3 O 3)纳米颗粒,其具有良好的 形状各向异性和磁特性,可用作磁赤铁矿或催化剂的前体的赤铁矿(α-Fe 2 O 3 O 3)纳米颗粒和合成的赤铁矿 方法,合成金属氧化物纳米粒子的方法包括:通过向不同于三价的金属盐中加入蒸馏水,表面活性剂和溶剂形成反胶束溶液,通过向反相中加入质子清除剂沉淀和分离凝胶型无定形金属氧化物颗粒 胶束溶液; 通过用极性溶剂洗涤凝胶型无定形金属氧化物颗粒来调节金属氧化物与表面活性剂的摩尔比; 以及在将凝胶型无定形金属氧化物颗粒分散在具有高沸点的非极性溶剂中之后通过加热或回流结晶金属氧化物纳米颗粒。
摘要:
The present invention provides for a metal oxide nanoparticle that contains a metal core, a shell formed on the surface of the core and consisted of the same metal as the core, and an organic compound containing an element capable of covalently bonding with the nanoparticle and a hydrophilic functional group. According to the examples, uniform-sized hydrophilic metallic oxide-based nanoparticles are obtained when superparamagnetic iron oxide particles, which have a globular shape and are less than 20 nanometers in size, are first synthesized in an organic solution, and then are converted to hydrophilic particles after undergoing surface modification.
摘要:
A titanium dioxide nanorod having anisotropy and a preparation method thereof in which, particularly, an ultrafine composite fiber of polymer and titanium dioxide precursor and a single crystal titanium dioxide nanorod using a phase separation are prepared, wherein a mixed solution containing titanium dioxide precursor, polymer which is compatible with the precursor and solvent is prepared, the mixed solution is electrospun to form titanium dioxide polymer composite fiber containing ultrafine fibril structure therein by the phase separation between the titanium dioxide precursor and the polymer, the composite fiber is heat-pressed, and the polymer material is removed from the composite fiber, so as to obtain titanium dioxide nanorod, which can be used as dye-sensitized solar cells, various sensors, and photocatalysts.