摘要:
The present invention provides a method for producing a honeycomb core having excellent thermal stability, mechanical properties and a rapid setting speed, which comprises applying adhesives onto ribbon type of carbon fiber fabrics at regular intervals so as to form the specific size of a cell, attaching the ribbons in a layered form and heat setting and expanding the attached portion to form a basic honeycomb core and then impregnating and setting the basic honeycomb core in phenol resin containing 0.5 to 4% by weight of graphite powder having 0.3 to 2 .mu.m of average diameter. This method is characterized by the fact that fiber breakage due to thermal decomposition gas occurring in the setting treatment is prevented and the dispersing effect of surface of graphite is maximized, and thereby the thermal and mechanical properties of the honeycomb core can be optimized.
摘要:
A filament type nano-sized long fiber and a method of producing the same. In the method, a spinning solution or a spinning melt is electro-spun in drops using a spinneret to which a critical voltage is applied, and the spun drops are continuously collected on a multi-collector. The spinning solution is produced by dissolving a blend or copolymer consisting of two or more kinds of polymers in a solvent. The spinning melt is produced by melting the polymers. The multi-collector is selected from the group consisting of a plate type collector, a roll type collector, and a combination thereof. The filament type nano-sized long fiber is processed into a yarn through one step during the electrospinning process, and thus, mechanical properties are better than those of a conventional nanofiber non-woven fabric. Consequently, the filament type nano-sized long fiber can be utilized for the extended application.
摘要:
The present invention relates to a method for preparing a carbon-carbon composite. The method of the present invention comprises adding a ceramic-based oxidation inhibitor having a brittle-to-ductile transition, to thereby eliminate high densification processes via re-impregnation and re-carbonization. The present invention also relates to a carbon-carbon composite prepared thereby that comprises a ceramic powder added to a thermosetting resin.
摘要:
A filament type nano-sized lone fiber and a method of producing the same are disclosed. In the method, a spinning solution or a spinning melt is electro-spun in drops using a spinneret to which a critical voltage is applied, and the spun drops are continuously collected on a multi-collector. The spinning solution is produced dissolving a blend or copolymer consisting of two or more kinds of polymers in a solvent. The spinning melt is produced by melting the polymers. The multi-collector is selected from the group consisting of a plate type collector, a roll type collector, and a combination thereof. The filament type nano-sized long fiber is processed into a yarn through one step during the electrospinning process, and thus, mechanical properties are better than those of conventional nanofiber non-woven fabric. Consequently, the filament type nano-sized long fiber can be utilized for the extended application.
摘要:
The present invention relates to a process for manufacturing activated carbon fibers having greatly improved adsorption performance time and adsorption performance when in contact with surface oxides such as in the case where gas and liquid impurities are treated. The process of the present invention comprises the following steps: a) placing conventional activated carbon fibers between an anode and a cathode plate in an acidic or an alkaline electrolytic solution, and b) applying a certain voltage at a current density between said graphite anode and graphite cathode plate. The present invention also relates to the product resulting from this process and the use of this product.
摘要:
A method for preparing a high-heat-resistant-epoxy-resin composition which comprises adding, as catalytic curing agent, a quinoxalinium salt having a benzyl group to difunctional and multifunctional epoxy resin and thermoset resin having a similar structure. The epoxy-resin composition obtained by the present invention is excellent in its impregnating property, processability, impact resistance, drug resistance, electric-insulating property, and adhesiveness.
摘要:
Disclosed is a method for producing an epoxy nanocomposite material containing vapor-grown carbon nanofibers and an epoxy nanocomposite material produced thereby. The method comprises physically mixing 0.1-5.0 parts by weight of vapor-grown carbon nanofibers as reinforcing materials with 100 parts by weight of an epoxy matrix resin to disperse the carbon nanofibers in the epoxy matrix resin, adding a curing agent to the mixture, and curing the mixture. According to the disclosed method, the vapor-grown carbon nanofibers are physically mixed with an epoxy matrix resin without using any solvent. Thus, the vapor-grown carbon nanofibers are sufficiently dispersed in the epoxy matrix resin compared to the case of using a solvent. Therefore, it is possible to produce an epoxy nanocomposite material having excellent mechanical strength and low friction/wear properties at room temperature and excellent thermal properties even at high temperature. Also, the vapor-grown carbon nanofibers are cost-effective and, at the same time, used in an amount smaller than the amount of carbon nanotubes used to improve the physical properties of epoxy resin in the prior art, thus effectively reducing the production cost of the nanocomposite material.
摘要:
The present invention relates to a novel epoxy resin curing system comprising a cationic latent catalytic curing agent containing a hexafluoroantimonate, characterized by exhibiting no shrinkage of volume or inducing an expansion of volume during the curing reaction of the epoxy resin. By the use of the epoxy resin curing system comprising a cationic latent catalytic curing agent containing a hexafluoroantimonate, it is possible to inhibit the shrinkage of volume or to induce the expansion of volume during the curing reaction of the epoxy resin. The development of such curing systems made it possible to improve the dimensional stability and to remove the residual stress, which has caused problems for decades in the production of various molded articles. Furthermore, the curing systems according to the present invention have excellent adhesive properties, thereby making it possible to develop adhesives for accurate spatial infiltration.
摘要:
The present invention relates to a novel latent curing agent which is capable of controlling the initiation reaction stage and is curable by heat and/or UV-light, an epoxy resin composition containing it, and a mixed epoxy composition (blend) having different functional groups. Particularly, it has been found that the epoxy resin composition consisting of an aliphatic type epoxy (CAE) and/or a difunctional bisphenol A type epoxy (DGEBA) has excellent mechanical properties.
摘要:
A heat-curable resin composition comprising a multifunctional epoxy resin monomer and a heat-latent curing agent of formula (I) provides a cured epoxy resin having good thermal and dimensional stability: ##STR1## wherein: R is hydrogen, a C.sub.1-4 alkyl or C.sub.1-4 alkoxy group.