摘要:
Disclosed are a method of producing metal nanoparticles continuously, and metal nanoparticles produced thereby. The method comprises: (a) preparing a metal precursor solution by dissolving a metal precursor in alcohol; (b) continuously putting the metal precursor solution into a reactor having supercritical conditions, thereby producing metal nanoparticles; (c) cooling the solution obtained in step (b); and (d) separating and collecting the metal nanoparticles from the solution obtained in step (c).
摘要:
Disclosed are a method of producing metal nanoparticles continuously, and metal nanoparticles produced thereby. The method comprises: (a) preparing a metal precursor solution by dissolving a metal precursor in alcohol; (b) continuously putting the metal precursor solution into a reactor having supercritical conditions, thereby producing metal nanoparticles; (c) cooling the solution obtained in step (b); and (d) separating and collecting the metal nanoparticles from the solution obtained in step (c).
摘要:
A method of fabricating a transparent electrode for use in a quantum dot sensitized solar cell, and a quantum dot sensitized solar cell fabricated according to the method are provided. According to the fabrication method, (S1) quantum dot precursor is introduced into a high pressure storage vessel and a quantum dot precursor is dissolved using subcritical fluid or supercritical fluid; (S2) the quantum dot precursor fluid prepared at (S1) is transported to contact with a conductive thin layer substrate comprised of a metal oxide placed in a high pressure reaction vessel, thereby causing the quantum dot precursor to be adsorbed in the metal oxide thin layer; (S3) non-adsorbed quantum dot precursor fluid of (S2) is transported and thus recovered to the high pressure storage vessel together with the subcritical fluid or supercritical fluid; and (S4) the subcritical fluid or supercritical fluid is removed from the high pressure reaction vessel, and the quantum dot precursor, adsorbed at (S2), is reacted with a second element which constitutes the quantum dot or a compound comprising the second element.
摘要:
A method for fabricating graphene sheets or graphene particles includes (a) dispersing graphene oxide in an alcohol solution to prepare a graphene oxide dispersion solution, (b) reducing the graphene oxide dispersion solution under a supercritical condition to prepare graphene sheets or graphene particles, each of which is as a cluster of the graphene sheets, and (c) separating the graphene sheets or graphene particles, followed by washing and drying, and a method for fabricating a graphene film is configured to fabricate a graphene film in form of a thin film using the graphene sheets or graphene particles fabricated according to the method.
摘要:
Provided is a zinc air fuel cell with enhanced cell performance which includes a separator-electrode assembly including a perforated metal plate as a cathode current collector, a catalyst-coated carbon paper, a separator, a perforated metal plate as an anode current collector, and a tilted nonconductive support. A metal plate may be placed on the tilted nonconductive support and connected to the anode current collector in the separator-electrode assembly to enlarge the active area of the anode current collector. Performance may be efficiently enhanced by minimizing a distance between the anode current collector and the cathode current collector, and by adding a metal plate which plays a role of an additional anode current collector on the tilted nonconductive support so as to increase the overall active area of anode current collector contacting with zinc pellets and to resultantly enhance the ionization of zinc.
摘要:
Provided is a zinc air fuel cell with enhanced cell performance, more particularly a zinc air fuel cell which includes a separator-electrode assembly including a perforated metal plate as a cathode current collector, a catalyst-coated carbon paper, a separator, a perforated metal plate as an anode current collector, and a tilted nonconductive support. Furthermore, a metal plate may be placed on the tilted nonconductive support and connected to the anode current collector in the separator-electrode assembly to enlarge the active area of the anode current collector. For the zinc air fuel cell according to the present invention, a manufacturing cost may be reduced by using a mixture of MnO2 and CeO2, which are low-priced metal oxides as catalyst materials for oxygen reduction, and by using a low-priced nylon filter, which has a micro-porous structure and shows high stability in alkaline electrolyte. According to the present invention, the performance of the zinc air fuel cell may be efficiently enhanced by using a separator-electrode assembly structure, which minimize a distance between the anode current collector and the cathode current collector, and by adding a metal plate which plays a role of an additional anode current collector on the tilted nonconductive support so as to increase the overall active area of anode current collector contacting with zinc pellets and to resultantly enhance the ionization of zinc.
摘要:
Provided is a method for preparing a cellulose phosphite compound, more particularly a method for preparing a cellulose phosphite compound whereby cellulose is phosphorylated using an ionic liquid comprising an amine-based cation and a phosphite-based anion.Thus prepared cellulose phosphite compound has a good solubility in water and is highly valuable as concentration control agent, medicine, biomembrane, or the like.
摘要:
A preparation method of a CIS-based or CIGS-based thin film for a light absorption layer of a solar cell, which uses a paste prepared by mixing precursors of Cu, In, Se, and optional Ga in a solvent, minimizes the raw material loss, does not produce a toxic gas during the process, and is suitable for producing a large scale film at a low production cost.
摘要:
Provided is a method for preparing a copper indium selenide (CIS) or copper indium gallium selenide (CIGS) thin film, including: (1) mixing Cu, In and Ga precursors in a solvent and adding a polymer binder to obtain a paste or ink; (2) coating the obtained CIG precursor paste or ink on a conductive substrate by printing, spin coating or spraying and heat-treating the same under air or oxygen gas atmosphere to remove remaining organic substances and obtain a CIG mixed oxide thin film; (3) heat-treating the obtained CIG mixed oxide thin film under hydrogen or sulfurizing gas atmosphere to obtain a reduced or sulfurized CIG mixed thin film; and (4) heat-treating the obtained reduced or sulfurized CIG mixed thin film under selenium-containing gas atmosphere to obtain a CIGS thin film. Since residual carbon resulting from organic additives, which is the biggest problem in the existing paste coating techniques, can be reduced remarkably, and CIGS crystal size can be improved, the disclosed method can improve efficiency of CIGS solar cells.
摘要:
The present invention provides a photoelectrochemical (PEC) system for the production of hydrogen from water, which comprises (A) an electrolytic bath comprising an electrode for catalytic oxidation, an electrode for catalytic reduction, an ion separation film disposed between the two electrodes, and an aqueous electrolyte solution into which the two electrodes and the ion separation film are immersed, and (B) a photoelectrode positioned at the outside of the electrolytic bath and electrically connected to the two electrodes. The inventive PEC system is characterized by disposing a photoelectrode at the position which does not contact aqueous electrolyte solution, thus preventing the lowering of the photoelectrode activities, and maximizing the hydrogen production efficiency.