摘要:
A method determines the signal usability of an adjacent channel in a multi-cell communication system without the aid of synchronization symbols. In general, a three step search is used to arrive at the adjacent channel signal quality. The first step is a coarse timing phase search. This is accomplished through a signal quality estimates (606). The second step arrives at the optimum time phase by first interpolating (608) the received signal around the time phase selected in the first step to generate additional samples. After the interpolation (608), signal quality estimates are calculated (610) for the time phases immediately surrounding the time phase found in the first step. The optimum time phase corresponds to the maximum of these quality estimates. Finally, in the third step, the signal quality estimate is calculated for the optimum time phase. This provides the adjacent channel signal quality estimate desired.
摘要:
A method for controlling an adaptive antenna array (50) is provided and includes receiving a plurality of signals, each signal including a series of signal data symbols (42) and signal non-data symbols (38, 40) divided into symbol transmission units with the signal non-data symbols (38, 40) disposed among the signal data symbols (42) in each unit and each signal related to the other signals of the plurality of signals as reflections of an original signal. The method also includes separating the signal non-data symbols (38, 40) from the signal data symbols (42), and comparing the signal non-data symbols (38, 40) to a set of known non-data symbols. The method further includes determining a set of weights according to the comparison of the signal non-data symbols (38, 40) to the set of known non-data symbols, the weights to be combined with the signal data values (42) to limit the effect of interference on the signal data symbols (42). An adaptive antenna array (50) is also provided including a weight calculator (62) including a program which controls the weight calculator (62) to perform the comparing (88, 90) and determining steps (94) of the method discussed above.
摘要:
This invention extends Alamouti's scheme for wideband TDMA systems; it then works in conjunction with time-domain equalization. In fact, the present invention envisages time-domain DFE or MLSE equalization (which is more robust than linear frequency-domain equalization) via the use of a training mid-amble to separate adjacent sub-blocks; this mid-amble is used in equalizer training and its direct and inter-symbol interference contributions to the received signal, are subtractively eliminated to facilitate the detection process itself. This approach may be applied to all systems in time-dispersive propagation media, where the burst or slot length is short enough that the fading can be considered time-invariant over its duration.
摘要:
A diversity receiver that receives diverse modulated signals may produce a usable signal from the received modulated signals in the following manner. Two modulated signals, each including a desired component and an undesired component, are received by the diversity receiver, wherein each desired component includes an originally transmitted signal and each undesired component includes noise and interference. The diversity receiver estimates each desired and undesired component and produces the usable signal based on the estimated desired components and the estimated undesired components.
摘要:
To compensate the audio distortion resulting from amplitude and phase imbalance in the quadrature oscillator (103) and mixers (105, 115) in zero-IF downconverters (203), a balancing action is required. An apparatus for distortion compensation compensates for the amplitude and phase imbalance to reduce audio distortion. This is accomplished by determining (309) two gain values, which are combined (217, 227, 229) with the in-phase and quadrature components of the zero-IF downconverter (203) to compensate for the imbalance.
摘要:
A digital receiver for GPS C/A-code signals is described. The GPS receiver of the present invention provides reception and tracking a plurality of satellites simultaneously, using four separate receiver channels. The GPS receiver of the present invention includes an analog front-end for selecting and frequency translating the received GPS signal. The GPS receiver further includes a highspeed digital signal processor for recovering the despread data of the GPS signal. The baseband signal is further processed by a general purpose digital signal processor for signal search, tracking, and data recovery operations, and a microprocessor provides overall receiver control, and interface with the operator of the GPS receiver.
摘要翻译:描述了用于GPS C / A码信号的数字接收机。 本发明的GPS接收机使用四个独立的接收机信道同时提供对多个卫星的接收和跟踪。 本发明的GPS接收机包括用于选择和频率转换接收的GPS信号的模拟前端。 GPS接收机还包括用于恢复GPS信号的解扩数据的高速数字信号处理器。 基带信号由用于信号搜索,跟踪和数据恢复操作的通用数字信号处理器进一步处理,并且微处理器提供总体接收器控制,并且与GPS接收器的操作者接口。
摘要:
A range equalization transceiver system (100) for increasing efficiency of a continuous duty communications link includes a first transceiver (105) for transmitting data traffic over a broadband traffic channel and a second transceiver (107) for determining routing information using a discovery channel based on link quality. A controller (103) is used for interpreting routing information from the second transceiver (107) where the controller (103) selects a transmitting scheme based on data traffic conditions on both the broadband traffic channel and link quality channel for sending data over a wireless network.
摘要:
A receiver configured for: a) receiving (410) a first OFDM symbol and generating a plurality of demodulated symbols for the first OFDM symbol; b) generating (420) decoder output code symbols corresponding to a subset of the plurality of demodulated symbols; c) determining (430) that a set of the decoder output code symbols make up a set of reference symbols corresponding to at least a portion of the subset of the plurality of demodulated symbols; d) generating (440) the set of reference symbols; e) generating (450) a set of channel estimates based on the set of reference symbols and the at least a portion of the subset of the plurality of demodulated symbols, for use in decoding a current OFDM symbol; and f) repeating steps b-e until a channel estimate for each demodulated symbol corresponding to the first OFDM symbol has been generated.
摘要:
A wireless communication system (100) that includes a plurality of base sites (101-103) employs a method and apparatus for determining a location of a communication unit (107) in the system. Upon transmission of an information signal (109) by the communication unit, each of the base sites receives the transmitted information signal. A serving base site (e.g., 103) determines a stream of information symbols from the information signal, derives timing information based on the information signal and the stream of information symbols, and conveys the stream of information symbols preferably to at least two non-serving base sites (101-102). The non-serving base sites determine respective timing information based on the information signal received from the communication unit and the stream of information symbols received from the serving base site. The location of the communication unit is then determined by either a base site or a stand-alone processing device (105) based on the serving base site's and non-serving base site's timing information.
摘要:
In a diversity reception communication system (200), a method is provided for recovering data symbols (213) from a transmitted signal. Multiple signals representing the transmitted signal are received via corresponding multiple reception paths (201, 202). For each reception path, values are determined for noise (206), channel quality (207), and for a weighting factor (209) as a function of the channel quality. The signals are processed using diversity combining (212) which includes the weighting factor (209) for each reception path, to provide a resultant signal that more likely represents the transmitted signal than any of the received signals alone. The data symbols (213) are recovered from the resultant signal.