摘要:
The invention relates to an apparatus (1) for determining a flow property of a fluid (2). The apparatus comprises a distance and velocity determination unit (3) for determining distances of elements of the fluid to the distance and velocity determination unit (3) and for determining velocities of the elements at the same time based on a self-mixing interference signal. The apparatus (1) comprises further a flow determination unit (4) for determining the flow property of the fluid (2) based on at least one of the determined distances and velocities. This allows determining the flow property, even if the fluid (2) is optically thick.
摘要:
An optical sensor (600) for detecting the movement of an object relative to the position of the optical sensor (600), using self-mixing interference, is described. The optical sensor (600) comprises a laser (100), a detector (200) and a filter device (500). The filter device (500) suppresses measurement signals generated by means of the detector (200) when movements of the object at a velocity below a defined threshold value cause the measurement signals. The optical sensor (600) may be used in a switch in order to enable selective switching depending on the velocity of the movement of the object.
摘要:
The present invention relates to a switchable dual wavelength solid state laser with a solid state gain medium (1) which is selected to emit optical radiation at a first wavelength with a first polarization and of at least a second wavelength with a second polarization different from said first polarization when optically or electrically pumped. A polarizing device (7) is arranged within the laser cavity, said polarizing device (7) being adjustable at least between said first and said second polarization. The two end mirrors (2, 3) of the laser cavity are designed to allow lasing of the solid state laser at the first wavelength when the polarizing device (7) is adjusted to the first polarization, and to allow lasing of the solid state laser at the second wavelength when the polarizing device (7) is adjusted to the second polarization. The proposed solid state laser allows an easy switching between two emission wavelengths.
摘要:
A system and method (10) for heating objects (O) during a thermal treatment process in a production line (P) is described. The system (10) comprises a transport system (11), a minor arrangement (201, 202, 203, 204, 205, 206) comprising a first mirror surface (21, 21′, 21″) and a second minor surface (22, 22′, 22″) arranged at opposite sides, so that the objects (O) may be transported between the minor surfaces (21, 22, 21′, 22′, 21″, 22″) along the production line and a radiation device (30) comprising a number of lasers for generating light (L). The radiation device (30) and the mirror arrangement (201, 202, 203, 204, 205, 206) are constructed such that the main direction (R) of light (L) that enters the mirror arrangement (201, 202, 203, 204, 205, 206) is directed towards the first mirror surface (21, 21′, 21″) at an angle to the production line (P), and the light (L) subsequently undergoes multiple reflections between the mirror surfaces (21, 22, 21′, 22′, 21″, 22″) so that a series of multiple reflections of the light (L) travels in the transport direction (OT) along at least a section of the minor surface (21, 22, 21′, 22′, 21″, 22″) or travels against the transport direction (OT) along at least a section of the minor surface (21, 22, 21′, 22′, 21″, 22″) and heats the objects (O) being transported between the minor surfaces (21, 22, 21′, 22′, 21″, 22″).
摘要:
The present invention relates to a solid state laser device with a solid state gain medium between two resonator end mirrors (3, 5) and a GaN-based pump laser (1) arranged to optically pump the solid state gain medium. The solid state gain medium is a Pr3+-doped crystalline or polycrystalline host material (4) which has a cubic crystalline structure and highest phonon energies of ≦600 cm and provides a band gap of ≧5.5 eV. The proposed solid state laser can be designed to emit at several visible wavelengths with the emitted power showing a reduced dependence on the temperature of the GaN-based pump laser (1).
摘要:
The present invention relates to a solid state laser device with a solid state gain medium between two resonator end mirrors (3, 5) and a GaN-based pump laser (1) arranged to optically pump the solid state gain medium. The solid state gain medium is a Pr3+-doped crystalline or polycrystalline host material (4) which has a cubic crystalline structure and highest phonon energies of ≦600 cm−1 and provides a band gap of ≧5.5 eV. The proposed solid state laser can be designed to emit at several visible wavelengths with the emitted power showing a reduced dependence on the temperature of the GaN-based pump laser (1).
摘要:
It is an object of the invention to provide a simple setup of a waveguide laser which allows to control the emission of specific laser wavelengths in a laser material having laser transitions of similar wavelengths. For this purpose a core (4) forming a gain medium is provided with a cladding (6) which introduces losses to an undesired laser transition but is transparent to the light of a desired laser transition. A second cladding (8) is provided for guiding the laser radiation. Pr: ZBLAN with a Tb: doped cladding may be used. Instead of the absorbing cladding (6) a photonic crystal (20) may be used. The laser is end-pumped by a laser diode (14).
摘要:
A system and method (10) for heating objects (O) during a thermal treatment process in a production line (P) is described. The system (10) comprises a transport system (11), a minor arrangement (201, 202, 203, 204, 205, 206) comprising a first mirror surface (21, 21′, 21″) and a second minor surface (22, 22′, 22″) arranged at opposite sides, so that the objects (O) may be transported between the minor surfaces (21, 22, 21′, 22′, 21″, 22″) along the production line and a radiation device (30) comprising a number of lasers for generating light (L). The radiation device (30) and the mirror arrangement (201, 202, 203, 204, 205, 206) are constructed such that the main direction (R) of light (L) that enters the mirror arrangement (201, 202, 203, 204, 205, 206) is directed towards the first mirror surface (21, 21′, 21″) at an angle to the production line (P), and the light (L) subsequently undergoes multiple reflections between the mirror surfaces (21, 22, 21′, 22′, 21″, 22″) so that a series of multiple reflections of the light (L) travels in the transport direction (OT) along at least a section of the minor surface (21, 22, 21′, 22′, 21″, 22″) or travels against the transport direction (OT) along at least a section of the minor surface (21, 22, 21′, 22′, 21″, 22″) and heats the objects (O) being transported between the minor surfaces (21, 22, 21′, 22′, 21″, 22″).
摘要:
The present invention relates to a switchable dual wavelength solid state laser with a solid state gain medium (1) which is selected to emit optical radiation at a first wavelength with a first polarization and of at least a second wavelength with a second polarization different from said first polarization when optically or electrically pumped. A polarizing device (7) is arranged within the laser cavity, said polarizing device (7) being adjustable at least between said first and said second polarization. The two end mirrors (2, 3) of the laser cavity are designed to allow lasing of the solid state laser at the first wavelength when the polarizing device (7) is adjusted to the first polarization, and to allow lasing of the solid state laser at the second wavelength when the polarizing device (7) is adjusted to the second polarization. The proposed solid state laser allows an easy switching between two emission wavelengths.
摘要:
The present invention relates to a method of switching laser emission of a solid state laser between different emission wavelengths, said different emission wavelengths being based on different electronic transitions in a solid state laser medium (3) of the solid state laser. The at least two end mirrors (1, 2) of the solid state laser are designed to allow lasing of the laser at the different emission wavelengths and coupling out of the different emission wavelengths at one end mirror (2) of the laser cavity. The switching of the laser emission is achieved by switching the cavity length of the laser cavity between different cavity lengths, wherein the different cavity lengths are selected such that at each of the cavity lengths the solid state laser lases at only one of the different emission wavelengths which is different from the emission wavelengths at the other of the selected cavity lengths. With the method and corresponding device an easy switching between emission wavelengths of a solid state laser is possible.