摘要:
A system includes a bus and a circuit for precharging the bus. The circuit may be coupled to receive a clock signal associated with the bus, and may be configured to precharge a bus during an interval of the period of the clock signal, the interval being between a first edge (rising or falling) and the subsequent edge (falling or rising). A second interval within the period and excluding the interval may be used to perform a bus transfer. In this manner, both precharging and transfer may be performed in the same clock cycle. Bandwidth of the bus may be improved since transfers may occur each clock cycle, rather than having a non-transfer clock cycle for precharging.
摘要:
A system on a chip for network devices. In one implementation, the system on a chip may include (integrated onto a single integrated circuit), a processor and one or more I/O devices for networking applications. For example, the I/O devices may include one or more network interface circuits for coupling to a network interface. In one embodiment, coherency may be enforced within the boundaries of the system on a chip but not enforced outside of the boundaries.
摘要:
A method and apparatus for wirelessly transmitting real-time data streams is described. To ensure continuous data flow, fast diversity and slow diversity can be used. Fast diversity chooses a receive antenna based on received signal parameters, such as signal strength, during the transmission header and prior to information transfer. Slow diversity stores received signal parameters from previous packets, associates the parameters with a selected antenna, and uses the parameter history to denote a “default” antenna. Additionally, receive and/or transmit beam forming can be used to maintain continuous communication between stations. Beam forming, which combines antenna signals to maximize performance, is possible when at least two transmit/receive signal processing chains are available.
摘要:
A system and method for closely synchronizing the transmission of real-time data streams is described. Synchronization data is transmitted by a cycle master for receipt by one or more cycle slaves. A cycle slave updates an internal state based on synchronization data received from the cycle master. This internal state may govern reproduction of received real-time data streams by the cycle slave. Such synchronization data may be inserted into transmitted media streams. The cycle slave internal state may be more accurately set by calculating timing differences between the cycle master and cycle slave and periodically adjusting that internal state between receipt of the synchronization data from the cycle master.
摘要:
A method and apparatus for wirelessly transmitting real-time data streams is described. To ensure continuous data flow, fast diversity and slow diversity can be used. Fast diversity chooses a receive antenna based on received signal parameters, such as signal strength, during the transmission header and prior to information transfer. Slow diversity stores received signal parameters from previous packets, associates the parameters with a selected antenna, and uses the parameter history to denote a “default” antenna. Additionally, receive and/or transmit beam forming can be used to maintain continuous communication between stations. Beam forming, which combines antenna signals to maximize performance, is possible when at least two transmit/receive signal processing chains are available.
摘要:
A system and method for closely synchronizing the transmission of real-time data streams is described. Synchronization data is transmitted by a cycle master for receipt by one or more cycle slaves. A cycle slave updates an internal state based on synchronization data received from the cycle master. This internal state may govern reproduction of received real-time data streams by the cycle slave. Such synchronization data may be inserted into transmitted media streams. The cycle slave internal state may be more accurately set by calculating timing differences between the cycle master and cycle slave and periodically adjusting that internal state between receipt of the synchronization data from the cycle master.
摘要:
Embodiments of the present invention provide for content optimization of a physical layer preamble. In one embodiment of the invention, a method for encapsulating a payload for transmission through a network is disclosed. The method comprises the step of programming a legacy physical layer length value in a legacy physical layer preamble. The legacy physical layer preamble is configured such that it can be received by any legacy stations that may be on the network, and such that a separate physical layer length value can be derived from the legacy physical layer preamble. Using such a system, content optimization of a physical layer preamble is provided.
摘要:
An apparatus is disclosed for use by a consumer in a non-medical setting that uses at least one low power optical radiation source in a suitable device that can be positioned over a treatment area for a substantial period of time or can be moved over the treatment area one or more times during each treatment. The apparatus can be moved over or applied to or near the consumer's skin surface as light or other electromagnetic radiation is applied to the skin. The device may include an abrasive surface over or adjacent to the aperture through which treatment radiation is applied.
摘要:
An apparatus is disclosed for use by a consumer in a non-medical setting that uses at least one low power optical radiation source in a suitable device that can be positioned over a treatment area for a substantial period of time or can be moved over the treatment area one or more times during each treatment. The apparatus can be moved over or applied to or near the consumer's skin surface as light or other electromagnetic radiation is applied to the skin. The apparatus may include an aperture that allows a user to, e.g., treat various skin contours and conditions, such as by attaching an adapter or using one of variously sized apertures contained on the apparatus.
摘要:
An apparatus is disclosed for use by a consumer in a non-medical setting that uses at least one low power optical radiation source in a suitable device that can be positioned over a treatment area for a substantial period of time or can be moved over the treatment area one or more times during each treatment. The apparatus can be moved over or applied to or near the consumer's skin surface as light or other electromagnetic radiation is applied to the skin. The apparatus contains a control system that controls the radiation source, which may include various sections that are controlled independently.