摘要:
A series of polymeric orthodontic appliances is made by providing a set of tooth analogs, each having a model crown that represents the shape of a corresponding tooth of the patient. The tooth analogs are moved along respective guides as needed in order to bring the associated model crown an incremental step toward or away from its desired position. The polymeric appliance is formed by placing a sheet of polymeric material over the model crowns after at least one tooth analog has been moved to create a desired model tooth arrangement.
摘要:
A series of polymeric orthodontic appliances is made by providing a set of tooth analogs, each having a model crown that represents the shape of a corresponding tooth of the patient. The tooth analogs are moved along respective guides as needed in order to bring the associated model crown an incremental step toward or away from its desired position. The polymeric appliance is formed by placing a sheet of polymeric material over the model crowns after at least one tooth analog has been moved to create a desired model tooth arrangement.
摘要:
Methods for recognizing a virtual tooth surface, defining a virtual tooth coordinate system, and simulating a collision between virtual teeth are provided. Methods include receiving input data specifying a point on the rendered surface model associated with a tooth, deriving a perimeter on the surface model of the tooth, and analyzing the surface model along a plurality of paths outwardly extending from points on the perimeter. Methods also include receiving point input data, receiving axis input data that defines first and second axes associated with the virtual tooth, computing a substantially normal vector for a portion of the tooth surface surrounding the point, and computing a coordinate system. Methods also include receiving permissible movement input data directed to permissible movement of a first virtual tooth, bringing the first virtual tooth into contact with a second virtual tooth, and displaying data resulting from the simulation.
摘要:
Methods for recognizing a virtual tooth surface, defining a virtual tooth coordinate system, and simulating a collision between virtual teeth are provided. Methods include receiving input data specifying a point on the rendered surface model associated with a tooth, deriving a perimeter on the surface model of the tooth, and analyzing the surface model along a plurality of paths outwardly extending from points on the perimeter. Methods also include receiving point input data, receiving axis input data that defines first and second axes associated with the virtual tooth, computing a substantially normal vector for a portion of the tooth surface surrounding the point, and computing a coordinate system. Methods also include receiving permissible movement input data directed to permissible movement of a first virtual tooth, bringing the first virtual tooth into contact with a second virtual tooth, and displaying data resulting from the simulation.
摘要:
In general, the invention relates to techniques for registering a three-dimensional (3D) coordinate system of a physical model of a patient's tooth structure to a 3D coordinate system of a virtual model of the same tooth structure. Techniques are described to register the complex geometries of the physical and virtual tooth structures by using a known physical characteristic of a pedestal associated with the physical model.
摘要:
Techniques are described for using radio-frequency identification (RFID) tags to track patient-specific materials throughout the manufacturing of indirect bonding trays. A series of RFID tags may be used to track the patient-specific material starting with the taking of a patient's impression at a clinic within a dental impression tray, through the process of casting and forming the indirect bonding tray at a manufacturing facility, back into the clinic where the appliances are bonded to the patient's teeth, and eventually into storage where the left-over materials may be archived. A database may be used to capture unique identifiers for the RFID tags and other information throughout the process.
摘要:
Indirect bonding trays for orthodontic treatment are made from a model of the patient's dental arch that is manufactured using digital data and rapid prototyping processes. The model includes one or more guides for orienting an orthodontic appliance in a desired position on a model tooth of the dental arch model. A holder is connected to the archwire slot of the appliance and is brought into contact with the guide in order to move the appliance to its intended position for subsequent manufacture of the indirect bonding tray.
摘要:
Computer-based techniques are described that use orthodontic prescription templates to assist an orthodontic practitioner in creating a patient-specific orthodontic prescription. In particular, an orthodontic practitioner may retrieve a stored electronic orthodontic prescription template. The practitioner may then generate an orthodontic prescription that is specific to a patient's teeth by modifying one or more bracket attributes of the template within orthodontic modeling software. Subsequently, the practitioner may communicate the patient-specific orthodontic prescription to a manufacturing facility that constructs an indirect bonding tray for use in physically placing brackets on the patient's teeth.
摘要:
A system automatically adjusts an orthodontic bracket to a desired occlusal height on a tooth within a 3D environment. The system allows a practitioner to specify a desired occlusal height at which to place the bracket on the tooth. The practitioner may choose the desired occlusal height from a standardized set of occlusal heights or may create a customized occlusal height to meet a patient's particular needs. Based on the desired occlusal height, the system automatically adjusts the placement of the orthodontic bracket to the desired occlusal height on the tooth within the 3D environment. The system then generates a visual representation the resulting bracket placement within the 3D environment.
摘要:
A system automatically adjusts an orthodontic bracket to a desired mesio-distal position on a tooth within a 3D environment. The system allows a practitioner to specify a desired mesio-distal position at which to place the bracket on the tooth. The practitioner may choose the desired mesio-distal position from a standardized set of mesio-distal positions or may create a customized mesio-distal position to meet a patient's particular needs. Based on the desired mesio-distal position, the system automatically adjusts the placement of the orthodontic bracket to the desired mesio-distal position on the tooth within the 3D environment. The system then generates a visual representation of the resulting bracket placement within the 3D environment.