Abstract:
An arterial cannula which includes a diverting side hole which simultaneously perfuses blood to the body and the lower extremity. Two barbs on the cannula exterior position the diverting hole just inside the blood vessel and prevent the back wall of the blood vessel from blocking the diverting hole. A transparent flash chamber on the proximal end of the cannula provides a visual indication of the entrance of the diverting side hole into the blood vessel. When the diverting hole enters the blood vessel, blood immediately fills the flash chamber.
Abstract:
An arterial cannula which includes a diverting side hole which simultaneously perfuses blood to the body and the lower extremity. Two barbs on the cannula exterior position the diverting hole just inside the blood vessel and prevent the back wall of the blood vessel from blocking the diverting hole. A transparent flash chamber on the proximal end of the cannula provides a visual indication of the entrance of the diverting side hole into the blood vessel. When the diverting hole enters the blood vessel, blood immediately fills the flash chamber.
Abstract:
A transseptal left atrial cannulation system which provides drainage of left atrial blood without the need for thoracotomy. A guide wire and a long needle assembly are inserted into a catheter. A cannula rides over the exterior of this catheter. The guide wire may be advanced past the needle assembly and through a catheter through the distal end of the catheter to assist in directing the system to the right atrium. The cannulation system is inserted in a femoral vein located in the groin. Both the guide wire and needle assembly are long enough to allow a substantial length to extend out of the body at the groin for manipulation even when the distal ends of the guide wire and needle assembly are positioned in the heart. When the catheter distal end is positioned adjacent the septum in the right atrium, the guide wire is withdrawn from the catheter orifice and the needle assembly moves past the guide wire and through the catheter orifice to a position adjacent to the septum. The needle pierces the septum and the catheter moves over the needle assembly to further dilate the septal hole. The cannula attached to the catheter also moves through the septal hole, further dilating it, and resting with the holes in the left atrium. The guide wire, the needle assembly, and the catheter are withdrawn from the cannula. Oxygenated blood from the left atrium drains through the cannula to the extracorporeal pump and back to the body through an arterial cannula.
Abstract:
A remote medication delivery system for providing remote monitoring, and optionally delivering, medication to a patient is provided. Specifically, in one embodiment the system comprises at least one dosage containment unit, a sensor for monitoring the status of the unit, and a transmitter for transmitting the status to a remote receiver. A method for remotely monitoring, and optionally delivering, medication to a patient is also provided.
Abstract:
A catheter includes a hub and a stylet extending through the hub to a distal end of the catheter. A balloon fixed at its proximal end to the hub and at its distal end to the stylet is axially extendible by operation of the stylet. Inserting the catheter, in its extended state, into an arterial conduit enables the balloon to be inflated and to exert only radial forces against the interior of the vessel. This apparatus and procedure overcomes spasms normally associated with preparation of an arterial conduit, such as the internal mammary artery, for bypass surgery. Extension of the balloon to as much as six times its initial length can be accomplished by positioning a separation spring between the stylet and the balloon.
Abstract:
A catheter includes a hub and a stylet extending through the hub to a distal end of the catheter. A balloon fixed at its proximal end to the hub and at its distal end to the stylet is axially extendible by operation of the stylet. Inserting the catheter, in its extended state, into an arterial conduit enables the balloon to be inflated and to exert only radial forces against the interior of the vessel. This apparatus and procedure overcomes spasms normally associated with preparation of an arterial conduit, such as the internal mammary artery, for bypass surgery. Extension of the balloon to as much as six times its initial length can be accomplished by positioning a separation spring between the stylet and the balloon.
Abstract:
A cardiac output probe assembly is disclosed wherein the assembly includes a chest tube which carries a cardiac output probe therein. The chest tube includes a main lumen for draining fluids from the thoracic cavity of the chest and a secondary lumen which carries leads attached to the probe. The probe is attached to the pulmonary artery or aorta vessel with detachable tines and/or sutures. The tines are uniquely configured to ensure that good contact between the probe and vessel is maintained. When cardiac output monitoring is complete, a pulling force is applied to the probe leads extending out through a proximal end of the tube. The pulling force detaches the tines and sutures, releasing the probe from connection with the vessel. Further withdrawal of the leads through the tube retracts the probe within the tube, where it is housed until the tube is removed from the thoracic cavity.