摘要:
Techniques for adjusting the dynamic range of an A/D converter in response to various conditions are disclosed. A value output by the A/D converter is utilized to determine if the A/D converter is operating at or above its current dynamic range capabilities (i.e., the A/D converter is potentially “saturated” at its current dynamic range setting). If potentially saturated, the dynamic range of the A/D converter may be increased. If not, the dynamic range of the A/D converter may be decreased or may be unchanged. Alternately, an upcoming or enacted change in the gain settings of one or more gain stages that condition the analog signal input to an A/D converter may be used as a condition that results in an adjustment to the dynamic range of the A/D converter.
摘要:
A narrowband interference cancellation system, method and digital signal processor is disclosed that removes narrowband interference in wide band communication systems. The system includes a narrowband processing component, wideband processing component, soft metric generator and at least one filter. The system is configured to receive a signal, identify one or more narrowband interferers in the received signal and filter out identified narrowband interferers. The narrowband processing component includes a filter bank configured to separate the received signal into a predetermined number of channel bands and identify a band with interference. The wide band processing component provides an average level for an unfiltered version of the received signal. The soft decision metric generator produces metrics based on predetermined thresholds. The filters receive coefficients that are determined using outputs from the soft decision metric generator that are first averaged using long term integrators and then stored in lookup tables.
摘要:
Dynamic gain and phase compensation is provided in a radio frequency (RF) receiver (106) including at least one switched Low Noise Amplifier (LNA) (212) coupled to an RF gain control unit (226) providing a gain control signal to the at least one switched LNA (212) for control thereof. The RF receiver also includes an analog-to-digital (A/D) converter (222) for digitizing the RF signal and outputting an N-bit digital signal to the RF gain control unit (226). The method for gain compensation includes dynamically adjusting the N-bit digital signal to compensate for the at least one switched LNA (212) in response to the gain control signal. The method for phase compensation includes dynamically normalizing the N-bit digital signal into an M-bit signal range to derive an M-bit digital signal, where M≦N and dynamically phase adjusting the M-bit digital signal to compensate for the at least one switched LNA (212) in response to the gain control signal.
摘要:
An automatic simulcast correction method (300) for a selective call receiver (100) includes the steps of measuring a received signal (304) for a received signal strength indication measurement and then determining if a protocol indicates a simulcast signal (310). If the received signal strength indication measurement is above a predefined threshold and the protocol indicates the simulcast signal, then the selective call receiver is optimized for simulcast delay spread distortion (312). If the received signal strength indication measurement is below a predefined threshold or the protocol does not indicate the simulcast signal, then the selective call receiver is optimized for static sensitivity (314).
摘要:
A digital tuning system (250) for changing a cutoff frequency of an analog filter (132) includes digital synthesizers (292 and 294) for producing a two-tone calibration signal (196) applied to an input of the filter after a quality factor of the filter is increased. The filter includes at least one R/C circuit with two resistors (304 and 306) for changing the quality factor and arrays (308 and 310) of capacitors for changing the cutoff frequency. The amplitude of the magnitude responses (409 and 411) of the filter to each tone (405 and 407) is measured by a two discrete Fourier transform single-frequency bin power detection circuits (253 and 254) while the filter is sequenced through a plurality of capacitance settings. An optimal capacitance for the R/C circuit is selected by comparing, to a pre-selected value, a difference between the responses of the filter to each tone, for each capacitance setting.
摘要:
An apparatus (200) and method (300) for receiving a communications signal. A spread spectrum signal demodulator (210) is adapted to demodulate a packet header (110) of a data packet (102) that is communicated by a wireless communications signal. The packet header (110) is modulated with a spread spectrum technique and the spread spectrum signal demodulator (210) produces a packet header detection signal (220) representing a successful detection of a predefined packet header value. A non-spread spectrum signal demodulator (212) is communicatively coupled to the spread spectrum signal demodulator (210) and demodulates, in response to the packet header detection signal (220), a non-spread spectrum modulated data payload within the data packet. A data output select (234) produces demodulated data produced by either one or both the spread spectrum signal demodulator (210) and the non-spread spectrum signal demodulator (212).
摘要:
Methods, devices and systems are provided for bit synchronizing multiple serial bitstreams (106) with a common clock signal (116). Activity occurring in each bitstream is detected (304) for each of a plurality of phases corresponding to cycles of the common clock signal. One of the plurality of phases is selected (308) for each of the serial bitstreams based upon the activity detected within the selected phase. Data is then extracted (322) from the selected phase for each of the serial bitstreams using the common clock signal to thereby bit synchronize each of the plurality of serial bitstreams to each other.
摘要:
An apparatus (200) and method (300) for receiving a communications signal. A spread spectrum signal demodulator (210) is adapted to demodulate a packet header (110) of a data packet (102) that is communicated by a wireless communications signal. The packet header (110) is modulated with a spread spectrum technique and the spread spectrum signal demodulator (210) produces a packet header detection signal 220 representing a successful detection of a predefined packet header value. A non-spread spectrum signal demodulator (212) is communicatively coupled to the spread spectrum signal demodulator (210) and demodulates, in response to the packet header detection signal (212), a non-spread spectrum modulated data payload within the data packet. A data output select (234) produces demodulated data produced by either one of both the spread spectrum signal demodulator (210) or the non-spread spectrum signal demodulator (212).
摘要:
A generator (304) generates first and second training signals (320, 318) that originate within a wireless communication device (FIG. 3) instead of being received from a source outside the device. A receive portion (212, 214, 216) of the device processes the first training signal to derive a processed training signal. An adaptive equalizer (310) equalizes the processed training signal to derive an equalized training signal. A processor (312) compares the equalized training signal and the second training signal using an adaptive algorithm to derive coefficients for the adaptive equalizer to compensate for variations in the receive portion, and adjusts the adaptive equalizer in accordance with the coefficients to derive a compensated output signal.
摘要:
Methods and apparatus are provided for gain and phase compensation in a radio frequency (RF) transmitter (108). The RF transmitter (108) has at least one power amplifier (PA) (205) for providing a transmitted signal having a signal power therefrom. An RF power detector (208) is coupled to the at least one PA (205) for detecting the signal power of the transmitted signal and an analog to digital (A/D) converter (210) is coupled to the RF power detector (208). A hysteresis unit (214) is coupled to the A/D converter (210) for generating a pulse (222) in response to a power threshold being crossed and a load switch control unit (218, 232) is coupled to the hysteresis unit and the at least one power amplifier for providing gain and phase compensation in response to the pulse.