摘要:
Provided is a low voltage and compact digital control regulator that achieves enhanced stability and reduced variations in ripple voltage and droop characteristics. The digital control regulator includes a first A/D converter configured to generate a first digital signal according to a differential voltage between an output voltage and a first reference voltage, an output stage circuit configured to generate the output voltage, a replica circuit having the same circuit configuration as the output stage circuit and configured to output a replica voltage related to the output voltage, a second A/D converter configured to generate a second digital signal according to a differential voltage between the replica voltage and a second reference voltage, and a control circuit configured to generate a control signal for controlling a gain of the output stage circuit, according to the first digital signal and the second digital signal.
摘要:
This application relates to analogue-to-digital converters (ADCs). An ADC 200 has a first converter (201) for receiving an analogue input signal (AIN) and outputting a time encode signal (DT), such as a pulse-width-modulated (PWM) signal, based on input signal and a first conversion gain setting (GIN). In some embodiments the first converter has a PWM modulator (401) for generating a PWM signal such that the input signal is encoded by pulse widths that can vary continuously in time. A second converter (202) receives the time encoded signal and outputs a digital output signal (DOUT) based on the time encoded signal (DT) and a second conversion gain setting (GO). The second converter may have a first PWM-to-digital modulator (403). A gain allocation block (204) generates the first and second conversion gain settings based on the time encoded signal (DT). The gain allocation block (204) may have a second PWM-to-digital modulator (203) which may be of lower latency and/or lower resolution that the first PWM-to-digital modulator (403).
摘要:
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
摘要:
This application relates to analogue-to-digital converters (ADCs). An ADC 200 has a first converter (201) for receiving an analogue input signal (AIN) and outputting a time encode signal (DT), such as a pulse-width-modulated (PWM) signal, based on input signal and a first conversion gain setting (GIN). In some embodiments the first converter has a PWM modulator (401) for generating a PWM signal such that the input signal is encoded by pulse widths that can vary continuously in time. A second converter (202) receives the time encoded signal and outputs a digital output signal (DOUT) based on the time encoded signal (DT) and a second conversion gain setting (GO). The second converter may have a first PWM-to-digital modulator (403). A gain allocation block (204) generates the first and second conversion gain settings based on the time encoded signal (DT). The gain allocation block (204) may have a second PWM-to-digital modulator (203) which may be of lower latency and/or lower resolution that the first PWM-to-digital modulator (403).
摘要:
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
摘要:
This application relates to analogue-to-digital converters (ADCs). An ADC 200 has a first converter (201) for receiving an analogue input signal (AIN) and outputting a time encode signal (DT), such as a pulse-width-modulated (PWM) signal, based on input signal and a first conversion gain setting (GIN). In some embodiments the first converter has a PWM modulator (401) for generating a PWM signal such that the input signal is encoded by pulse widths that can vary continuously in time. A second converter (202) receives the time encoded signal and outputs a digital output signal (DOUT) based on the time encoded signal (DT) and a second conversion gain setting (GO). The second converter may have a first PWM-to-digital modulator (403). A gain allocation block (204) generates the first and second conversion gain settings based on the time encoded signal (DT). The gain allocation block (204) may have a second PWM-to-digital modulator (203) which may be of lower latency and/or lower resolution that the first PWM-to-digital modulator (403).
摘要:
An apparatus is provided. A comparison circuit is configured to receive an analog signal. A reference circuit is coupled to the comparison circuit and is configured to provide a plurality of reference signals to the comparison circuit. A conversion circuit is coupled to the comparison circuit and is configured to detect a change in the output of the comparison circuit. A time-to-digital converter (TDC) is coupled to the comparison circuit. A timer is coupled to the comparison circuit. A rate control circuit is coupled to the conversion circuit. An output circuit is coupled to the rate control circuit and the TDC, where the output circuit is configured to output at least one of a synchronous digital representation of the analog signal and an asynchronous digital representation of the analog signal.
摘要:
An analog-to-digital conversion device and a method thereof are provided. The analog-to-digital conversion device includes a first level adjustment unit, an analog-to-digital converter (ADC), and a linear range detection unit. The ADC converts a test signal or a first input signal to generate a test data stream or a first output data stream. In an adjustment mode, the linear range detection unit obtains a conversion curve of the ADC by using the test data stream and determines whether to adjust offset control information according to a linear range of the conversion curve. In an operation mode, the linear range detection unit continues outputting the offset control information. Additionally, before transmitting the first input signal, the first level adjustment unit adjusts a direct-current level of the first input signal according to the offset control information to allow the first input signal to be within the linear range of the conversion curve.
摘要:
A receiver (e.g., for a 10 G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
摘要:
A process variable transmitter is used to measure a process variable, and, in doing so, dynamically changes the resolution of the A/D converter based upon the measured value of the analog input signal. This can be done by automatically adjusting the configurable resolution gain adjustment based on the value of the analog signal being measured, by normalizing the input signal being measured so that it is centered in an optimal resolution window of the A/D converter, or by adjusting a voltage reference provided to the A/D converter.