Abstract:
The present invention provides for a self-correcting state circuit. A first flip flop is configured to receive a clock input and a first data input, and to generate a first output in response to the clock input and the first data input. A second flip flop is coupled to the first flip flop and configured to receive the clock input and to receive the first output as a second data input, and to generate a second output in response to the clock input and the first output. A first correction circuit is coupled to the second flip flop and configured to generate a corrected output. A third flip flop is coupled to the first correction circuit and configured to receive the clock input and to receive the corrected output as a third data input, and to generate a third output in response to the clock input and the third data input.
Abstract:
A method and enhanced phase-locked loop (PLL) circuit enable effective testing of the PLL, and a design structure on which the subject circuit resides is provided. A phase frequency detector generates a differential signal, receiving a reference signal and a feedback signal of an output signal of the PLL circuit. A charge pump is coupled to the phase frequency detector receiving the differential signal. The charge pump applies either negative or positive charge pulses to a low-pass filter, which generates a tuning voltage input applied to a voltage controlled oscillator. A first divider is coupled to the voltage controlled oscillator receives and divides down the VCO output signal, providing the output signal of the PLL circuit. A second divider receives the output signal of the PLL circuit and provides the feedback signal to the phase frequency detector. The output signal of PLL circuit is applied to a clock distribution.
Abstract:
A method and apparatus are provided for switching in metal insulator metal (MIM) capacitors and field effect transistor (FET) tuning capacitors for oscillator circuits. Apparatus for switching in metal-insulator-metal (MIM) capacitors and field effect transistor (FET) tuning capacitors for oscillator circuits includes a first differential oscillator node and a second differential oscillator node. A plurality of metal-insulator-metal (MIM) capacitors are connected to the first differential oscillator nodes and a plurality of metal-insulator-metal (MIM) capacitors are connected to the second differential oscillator nodes. A respective switching transistor is connected in series with an associated one of the metal-insulator-metal (MIM) capacitors. Each switching transistor receives a decoding input and is arranged for providing an open or a ground connection for the associated one of the metal-insulator-metal (MIM) capacitors. A first field effect transistor (FET) tuning capacitor has a gate connected to the first differential oscillator node. A second field effect transistor (FET) tuning capacitor has a gate connected to the second differential oscillator node. Each of the first field effect transistor (FET) tuning capacitor and the second field effect transistor (FET) tuning capacitor having a source and a drain connected together and a control voltage applied to the connected source and drain for varying tuning capacitance.
Abstract:
An improved phase locked loop (PLL) circuit is provided for use in microprocessor clock generation. A ring oscillator provides an output frequency signal. A voltage to current converter converts differential control voltages to a variable reference current applied to the ring oscillator. A range control reference current generator applies a range control reference current to the ring oscillator. A range control operatively controls the range control reference current generator to sequentially change the range control reference current applied to the ring oscillator. A lock detector coupled to the range control compares the output frequency signal and a reference frequency signal and responsive to the compares signals applies a locked signal to the range control. Responsive to an applied locked signal, the range control stops changing ranges. The phase locked loop (PLL) circuit automatically sweeps through multiple frequency subranges responsive to the range control. A control signal is applied to the voltage to current converter for selectively controlling an operational mode of the voltage to current converter from a squelched operational mode to an unsquelched operational mode after a set time period. This control signal also is applied to the range control, so that the range control stops changing ranges.
Abstract:
The present invention provides for a self-correcting state circuit. A first flip flop is configured to receive a clock input and a first data input, and to generate a first output in response to the clock input and the first data input. A second flip flop is coupled to the first flip flop and configured to receive the clock input and to receive the first output as a second data input, and to generate a second output in response to the clock input and the first output. A first correction circuit is coupled to the second flip flop and configured to generate a corrected output. A third flip flop is coupled to the first correction circuit and configured to receive the clock input and to receive the corrected output as a third data input, and to generate a third output in response to the clock input and the third data input.
Abstract:
The present invention provides for state correction. A first value in a state circuit is received from a flip flop. The received value is transmitted to a second flip flop. The received value within the second flip flop is altered if an error condition arises. The received value is transmitted to a third flip flop. In one aspect, the received value transmitted to the third flip flop comprises an unaltered received value. In another aspect, the received value transmitted to the third flip flop comprises transmitting an altered received value. This allows for an incorrect state within the state machine to change to a correct state after a few clock pulses.
Abstract:
A high speed differential output driver is provided with increased voltage swing and predrive common mode adjustment. The high speed differential output driver includes a differential input with a voltage amplifier receiving the differential input signal and a common mode adjustment signal and providing an adjustable voltage amplified signal. An emitter follower is coupled to the voltage amplifier. The emitter follower provides a level shifted voltage amplified signal. A driver is coupled to the emitter follower receiving the level shifted voltage amplified signal and providing a driver output signal.
Abstract:
An apparatus and method for delaying a signal using a variable delay line circuit. A variable delay line circuit includes first and second delay lines, each including a plurality of delay elements. A multiplexer is coupled to respective outputs of the first and second delay lines and selectively couples the output of one of the first or second delay lines to an output of the multiplexer. A control circuit is coupled to the multiplexer and the first and second delay lines, and controls the multiplexer so as to produce a delayed signal at the multiplexer output using one of the first or second delay lines, and changes a delay factor of the other one of the first or second delay lines by varying a resistance and a current of one or more delay elements of the other one of the first or second delay lines. A reference voltage source is coupled to each of the delay elements and provides a reference voltage maintained at a substantially constant amplitude with respect to the power supply to each of the delay elements. The delayed signal may be a differential signal. Each of the delay elements may include one or more adjustable loads or adjustable current sources. An adjustable load may be implemented using P-FETs. In one embodiment, at least one of the delay elements of the first and second delay lines includes a plurality of selectable delay devices, each of which is associated with one of a plurality of selectable delay factors.
Abstract:
A low voltage differential signal detector capable of detecting low-voltage differential signals over a large common-mode voltage range. The signal detector uses two differential pairs of opposite conductivity type, coupled to each other in a self-biasing manner to detect low voltage swings in a signal over a large common-mode voltage range. Depending upon the common-mode voltage level of the signal, the low-voltage level swings will be detected by one of the differential pairs, the other of the differential pairs or both.
Abstract:
A complementary metal oxide semiconductor (CMOS) voltage regulator for low headroom applications includes a differential input common mode range amplifier. The differential input common mode range amplifier is formed by a plurality of CMOS transistors. A source follower CMOS transistor is coupled to an output of the differential input common mode range amplifier for providing an output of the CMOS voltage regulator. A current source is coupled to the differential input common mode range amplifier for maintaining a bias current through the differential input common mode range amplifier.