摘要:
A system (1010, 1110) for identifying a landmark is disclosed. The system includes a field generator (1016, 1116) for generating a magnetic field, an orthopaedic implant (1030, 1130) located within the magnetic field, the implant having at least one landmark (1028, 1128), a removable probe (1029, 1129) with a first magnetic sensor (1026, 1126), a landmark identifier (1016, 1116) with a second magnetic sensor (1020, 1120) and a processor (1012, 1112) for comparing sensor data from the first and second sensor and using the set distance to calculate the position of the landmark identifier relative to the at least one landmark. The system allows for blind targeting of one or more landmarks.
摘要:
A system (1010, 1110) for identifying a landmark is disclosed. The system includes a field generator (1016, 1116) for generating a magnetic field, an orthopedic implant (1030, 1130) located within the magnetic field, the implant having at least one landmark (1028, 1128), a removable probe (1029, 1129) with a first magnetic sensor (1026, 1126), a landmark identifier (1016, 1116) with a second magnetic sensor (1020, 1120) and a processor (1012, 1112) for comparing sensor data from the first and second sensor and using the set distance to calculate the position of the landmark identifier relative to the at least one landmark. The system allows for blind targeting of one or more landmarks.
摘要:
A system (1010, 1110) for identifying a landmark is disclosed. The system includes a field generator (1016, 1116) for generating a magnetic field, an orthopaedic implant (1030, 1130) located within the magnetic field, the implant having at least one landmark (1028, 1128), a removable probe (1029, 1129) with a first magnetic sensor (1026, 1126), a landmark identifier (1016, 1116) with a second magnetic sensor (1020, 1120) and a processor (1012, 1112) for comparing sensor data from the first and second sensor and using the set distance to calculate the position of the landmark identifier relative to the at least one landmark. The system allows for blind targeting of one or more landmarks.
摘要:
A system (1010, 1110) for identifying a landmark is disclosed. The system includes a field generator (1016, 1116) for generating a magnetic field, an orthopaedic implant (1030, 1130) located within the magnetic field, the implant having at least one landmark (1028, 1128), a removable probe (1029, 1129) with a first magnetic sensor (1026, 1126), a landmark identifier (1016, 1116) with a second magnetic sensor (1020, 1120) and a processor (1012, 1112) for comparing sensor data from the first and second sensor and using the set distance to calculate the position of the landmark identifier relative to the at least one landmark. The system allows for blind targeting of one or more landmarks.
摘要:
An instrument for reduction of a bone fracture is disclosed. The instrument includes an orthopaedic surgical implant (112), an implant member (190, 200, 270), and a driving member (180, 210, 260). The implant member (190, 200, 270) has a bone engagement portion (195, 203, 275) and a driven portion (197, 208, 278). The driving member (180, 210, 260) cooperates with the driven portion (197, 208, 278) to move the implant member (190, 200, 270) and reduce the fracture. Also disclosed is a sliding compression orthopaedic implant (300). The implant (300) comprises a first implant member (310), said first implant member (310) having a transverse hole (311); and a second implant member (312) connected to said transverse hole (311), said second implant member (312) having a shank (314), and said shank (314) having a bone engagement portion (316) at a first end portion (318) and a sliding compression member (320) at a second end portion (322).
摘要:
In one general aspect, an orthopedic fixation device includes an inner core and shaft formed of a multi-layered, fiber-reinforced composite. A sensing element is embedded within the multi-layered, fiber-reinforced composite.
摘要:
In one general aspect, an orthopaedic fixation device includes an inner core and shaft formed of a multi-layered, fiber-reinforced composite. A sensing element is embedded within the multi-layered, fiber-reinforced composite.
摘要:
Embodiments of the present invention provide a bone fixation assembly that can provide polyaxial fixation. The polyaxial fixation may be provided by fins that protrude from an opening in a bone plate or fins that protrude from a fastener head.
摘要:
A multi-layer, fiber-reinforced composite orthopedic fixation device having a design selected based on a desired characteristic of the orthopedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
摘要:
Embodiments of the present invention provide a bone fixation assembly that can provide polyaxial fixation. The polyaxial fixation may be provided by fins that protrude from an opening in a bone plate or fins that protrude from a fastener head.