摘要:
Compositions containing a transporter component and a signaling component and a method for using said compositions for analyzing porous media and flowing liquid streams, specifically for measuring pressure, temperature, relative abundance of water, pH, redox potential and electrolyte concentration. Analytes may include petroleum or other hydrophobic media, sulfur-containing compounds. The transporter component includes an amphiphilic nanomatenal and a plurality of solubilizing groups covalently bonded to the transporter component. The signaling component includes a plurality of reporter molecules associated with the transporter component. Said reporter molecules may be releasable from the transporter component upon exposure to at least one analyte. The reporter molecules may be non-covalently associated with the transporter component, or the reporter molecules are covalently bonded to the transporter component. Furthermore, said compositions and methods may be used to actively enhance oil recovery and for remediation of pollutants.
摘要:
In some embodiments, the present invention provides methods of treating oxidative stress in a subject by administering a therapeutic composition to the subject. In some embodiments, the therapeutic composition comprises a carbon nanomaterial with anti-oxidant activity. In some embodiments, the anti-oxidant activity of the carbon nanomaterial corresponds to ORAC values between about 200 to about 15,000. In some embodiments, the administered carbon nanomaterials include at least one of single-walled nanotubes, double-walled nanotubes, triple-walled nanotubes, multi-walled nanotubes, ultra-short nanotubes, graphene, graphene nanoribbons, graphite, graphite oxide nanoribbons, carbon black, oxidized carbon black, hydrophilic carbon clusters, and combinations thereof. In some embodiments, the carbon nanomaterial is an ultra-short single-walled nanotube that is functionalized with a plurality of solubilizing groups. In some embodiments, the carbon nanomaterial is a polyethylene glycol functionalized hydrophilic carbon cluster (PEG-HCC). In some embodiments, the administered therapeutic compositions of the present invention may also include an active agent or targeting agent associated with the carbon nanomaterial. Additional embodiments of the present invention pertain to the aforementioned carbon nanomaterial compositions for treating oxidative stress.
摘要:
In some embodiments, the present invention provides methods of treating oxidative stress in a subject by administering a therapeutic composition to the subject. In some embodiments, the therapeutic composition comprises a carbon nanomaterial with anti-oxidant activity. In some embodiments, the anti-oxidant activity of the carbon nanomaterial corresponds to ORAC values between about 200 to about 15,000. In some embodiments, the administered carbon nanomaterials include at least one of single-walled nanotubes, double-walled nanotubes, triple-walled nanotubes, multi-walled nanotubes, ultra-short nanotubes, graphene, graphene nanoribbons, graphite, graphite oxide nanoribbons, carbon black, oxidized carbon black, hydrophilic carbon clusters, and combinations thereof. In some embodiments, the carbon nanomaterial is an ultra-short single-walled nanotube that is functionalized with a plurality of solubilizing groups. In some embodiments, the carbon nanomaterial is a polyethylene glycol functionalized hydrophilic carbon cluster (PEG-HCC). In some embodiments, the administered therapeutic compositions of the present invention may also include an active agent or targeting agent associated with the carbon nanomaterial. Additional embodiments of the present invention pertain to the aforementioned carbon nanomaterial compositions for treating oxidative stress.
摘要:
Various embodiments of the present disclosure pertain to nanocomposites for detecting hydrocarbons in a geological structure. In some embodiments, the nanocomposites include: a core particle; a polymer associated with the core particle; a sulfur-based moiety associated with the polymer; and a releasable probe molecule associated with the core particle, where the releasable probe molecule is releasable from the core particle upon exposure to hydrocarbons. Additional embodiments of the present disclosure pertain to methods of detecting hydrocarbons in a geological structure by utilizing the nanocomposites of the present disclosure.
摘要:
In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.
摘要:
In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.
摘要:
The present invention pertains to therapeutic compositions that comprise: (1) a nanovector, (2) an active agent; and (3) a targeting agent, wherein the active agent and the targeting agent are non-covalently associated with the nanovector. The present invention also pertains to methods of treating various conditions in a subject by utilizing the above-described therapeutic compositions. Methods of making the therapeutic compositions are also a subject matter the present invention.
摘要:
In some embodiments, the invention pertains to therapeutic compositions for treating a brain tumor. Such therapeutic compositions generally comprise: (1) a nanovector; (2) an active agent associated with the nanovector with activity against brain tumor cells; and (3) a targeting agent associated with the nanovector with recognition activity for a marker of the brain tumor cells. In some embodiments, the active agent and the targeting agent are non-covalently associated with the nanovector. Additional embodiments of the present invention pertain to methods of treating a brain tumor in a subject (e.g., a human being) by administering the aforementioned therapeutic compositions to the subject. Further embodiments of the present disclosure pertain to methods of formulating therapeutic compositions for treating a brain tumor in a subject in a personalized manner.
摘要:
The present invention pertains to therapeutic compositions that comprise: (1) a nanovector, (2) an active agent; and (3) a targeting agent, wherein the active agent and the targeting agent are non-covalently associated with the nanovector. The present invention also pertains to methods of treating various conditions in a subject by utilizing the above-described therapeutic compositions. Methods of making the therapeutic compositions are also a subject matter the present invention.
摘要:
A method of reducing side effects of damage in a human subject exposed to radiation includes administering to the human subject carbon nanotubes in a pharmaceutically acceptable carrier after or prior to exposure to radiation. A composition for reducing radical damage includes a carbon nanotube which is functionalized (1) for substantial water solubility and (2) with a radical trapping agent appended to the carbon nanotube forming a radical scavenger-carbon nanotube conjugate.