Abstract:
A cartridge assembly (10) for firearms or weapons, said cartridge assembly including a support body (11) having a central longitudinal channel (16) housing a plurality of projectiles (20, 22, 24) in end-to-end orientation and having a plurality of circumferential chambers (14), wherein each chamber houses (14a, 14b, 14c) at least one propellant charge (12a, 12b, 12c) and is located adjacent to a respective projectile; fluid communication means (18) included in the support body for communicating the products of a gaseous expansion of said propellant from a respective chamber (14) into said central longitudinal channel (16); whereby, upon initiation of a selected propellant charge (12a, 12b, 12c), the communicated products of gaseous expansion from a circumferential chamber force or eject a respective projectile (20, 22, 24) from the cartridge assembly (10). The propellant charges may comprise a volume of propellant material encased in a bag with an igniter.
Abstract:
A belt-fed machine gun (1) for firing a multiplicity of cartridges (6) encased in sleeves (7), which sleeves are linked to form a belt (8). The machine gun includes a plurality of substantially parallel barrels (2) mounted for circumrotation, a plurality of cradles (5) for supporting the cartridges encased in the sleeves, said cradles being mounted for circumrotation with said plurality of substantially parallel barrels (2) wherein a number of the plurality of cradles in an operative condition are aligned coaxially with corresponding barrels, a housing (9) and a breechblock (10). The housing and said cradles (5) in an operative condition engage sleeves (7) encasing cartridges (6) to form chambers with said breechblock, wherein the breechblock includes a guide (11) for engagement with a follower (15) on the cartridges (6) to urge cartridge and sleeve (7) into engagement with a barrel (2). The gun (1) further includes a firing mechanism for initiating a propellant charge (18) in one or more of the cartridges (6) supported by cradles (5) in the operative condition.
Abstract:
A weapon (104) including a stock, a barrel assembly (105) slidably mounted on said stock whereby, on discharging said weapon, the barrel assembly (105) slidably recoils relative to said stock, and a damper (107) for decelerating the recoiling barrel assembly, wherein said barrel assembly (105) includes a plurality of projectiles axially disposed within a barrel (108) wherein each of said projectiles is associated with a discrete propellant charge for propelling said projectile from the barrel. Suitably the weapon further includes a breech block (109) which slidably recoils relative to said stock and a further damper (106) for decelerating the recoiling breech block.
Abstract:
A projectile (10) is for use with barrel assemblies of the type having a plurality of projectiles axially disposed within a barrel having a bore and a muzzle and which projectiles are associated with discrete propellant charges for propelling said projectiles sequentially through the muzzle of the barrel. Projectile (10) comprises expandable sleeve (11) encircling at least part of core (12). Sleeve (11) and core (12) have wedging surfaces (14) operable to deform trailing part (21) of sleeve (11) into sealing engagement with the bore in response to pressure exerted on the projectile (10). When projectiles (10) are axially disposed in the bore, rear face (24) of the leading projectile cooperates with leading face (20) of the trailing projectile to define a discrete space about spine (23) for receipt of the propellant charge. Sleeve (11) is retained about the core (12) during travel to the target.
Abstract:
An anti-missile missile (10) includes a missile configured to track and intercept an incoming missile travelling along path (12). Missile (10) includes at least one barrel assembly (13) having a multiplicity of projectiles stacked axially within barrel assembly (13), together with discrete selectively ignitable propellant charges for propelling the multiplicity of projectiles sequentially through the muzzle of barrel assembly (13). The multiplicity of projectiles produce a fragment column (20) along path (12) to destroy the incoming missile. Alternatively, anti-missile missile (10) can be guided to produce a direct hit at point (18) on the incoming missile. Barrel assembly (13) can include an aiming mechanism so that barrel assembly (13) can be rotated through sector (15, 16) to target path (12).
Abstract:
A controlled free radical polymerization process, which includes the steps of: adding a monofunctional iniferter compound to an oxygen-free solvent; heating the solution to a temperature sufficient to allow the iniferter compound to form two carbon centered radical residues; adding a first monomer composition comprising one or more monomers to the solution containing the radical containing residues; polymerizing the first monomer composition to form a quasi-living polymer; and optionally polymerizing a second monomer composition comprising one or more monomers, which are different than the first monomer composition. The resulting non-random copolymer having the general formula: φ-[-Ap-Bs-]t-φwhere A and B are different compositions of ethylenically unsaturated monomers; p is an integer from 1 to 1,000; s is an integer from 0 to 1,000; t is an integer from 1 to 100; and φ is a residue from the iniferter.
Abstract:
The present invention is directed to a copolymer that includes a first radically polymerizable low surface tension (meth)acrylate monomer and one or more other radically polymerizable ethylenically unsaturated monomers. The copolymer has a polydispersity index of less than 2.5. The present invention further includes a controlled radical polymerization method to make the above described low surface tension containing copolymers. The method includes the steps of adding a first radically polymerizable low surface tension (meth)acrylate monomer and one or more other radically polymerizable ethylenically unsaturated monomers to a solution containing a suitable atom transfer radical polymerization (ATRP) initiator.
Abstract:
Epoxy functional polymers comprising the reaction product of a terpene and a epoxy functional monomer are disclosed. Coatings comprising these polymers are also disclosed, including cationic electrodepositable coatings.
Abstract:
Projectiles with sealed propellant are described herein. In one embodiment of the invention, a projectile includes a chamber having a propellant charger, an exit from the chamber for release of propellant gases into a barrel when the propellant is ignited to fire the projectile, and a seal to block the exit which is opened by ignition of the propellant within the chamber but is resistant to ignition of other propellant in the barrel, where the seal is carried from the barrel by the projectile after the ignition. Other methods and apparatuses are also described.
Abstract:
An existing projectile (21) is modified by adding a tail piece (22) to enable axial stacking of multiple projectiles (20) in a common barrel. Propellant for each modified projectile (20) is contained in respective chambers located external to the barrel and connected to the bore of the barrel through associated ports. Tail piece (22) aligns with a respective port and provides a space between consecutive projectiles (20) into which the propellant gas expands after ignition. Separate claims are directed to tail assembly (22), modified projectile (20), the barrel assembly having a plurality of projectiles (20) stacked in end-to-end relation, and to an external initiation system for the barrel assembly (see FIGS. 4, 7).