摘要:
The solder-joint integrity of digital electronic packages, such as FPGAs or microcontrollers that have internally connected input/output buffers, is evaluated by applying a time-varying voltage through one or more solder-joint networks to charge a charge-storage component. Each network includes an I/O buffer on the die in the package and a solder-joint connection, typically one or more such connections inside the package and between the package and a board. The time constant for charging the component is proportional to the resistance of the solder-joint network, hence the voltage across the charge-storage component is a measurement of the integrity of the solder-joint network.
摘要:
The solder-joint integrity of digital electronic packages, such as FPGAs or microcontrollers that have internally connected input/output buffers, is evaluated by applying a time-varying voltage through one or more solder-joint networks to charge a charge-storage component. Each network includes an I/O buffer on the die in the package and a solder-joint connection, typically one or more such connections inside the package and between the package and a board. The time constant for charging the component is proportional to the resistance of the solder-joint network, hence the voltage across the charge-storage component is a measurement of the integrity of the solder-joint network.
摘要:
The solder-joint integrity of digital electronic packages, such as FPGAs or microcontrollers that have internally connected input/output buffers, is evaluated by applying a time-varying voltage through one or more solder-joint networks to charge a charge-storage component. Each network includes an I/O buffer on the die in the package and a solder-joint connection, typically one or more such connections inside the package and between the package and a board. The time constant for charging the component is proportional to the resistance of the solder-joint network, hence the voltage across the charge-storage component is a measurement of the integrity of the solder-joint network.
摘要:
A solder-joint detection circuit uses a resistive bridge and a differential detector to detect faults in the solder-joint network both inside and outside the digital electronic package during operation. The resistive bridge is preferably coupled to a high supply voltage used to power the package. Resistors R1 and R2 are connected in series at a first junction between the high and low supply voltages and a resistor R3 is coupled to the high supply voltage and connected in series with the resistance of the solder-network at a second junction. The network is held at a low voltage on the die. The detector compares the sensitivity and detection voltages and outputs a Pass/Fail signal for the solder-joint network.
摘要:
A die-level process monitor (DLPM) provides a means for independently determining whether an IC malfunction is a result of the design or the manufacturing processing and further for gathering data on specific process parameters. The DLPM senses parameter variations that result from manufacturing process drift and outputs a measure of the process parameter. The DLPM will typically sense the mismatch of process parameters between two or more test devices as a measure of process variation between a like pair of production devices. The DLPM may be used as a diagnostic tool to determine why an IC failed to perform within specification or to gather statistics on measured process parameters for a given foundry or process.