Abstract:
A hearing aid is programmable with dual-tone multiple-frequency signals, received through the hearing aid microphone, to adjust operating coefficients of signal conditioning circuitry in the aid. A DTMF receiver filters and detects DTMF tone pairs into digital words provided to a controller for decoding, some of the digital words representing programming instructions and others representing data. In accordance with the instructions, the controller conveys the data to memory operatively associated with a plurality of control ports to the signal conditioning circuitry, with operating coefficients of the conditioning circuitry determined by the contents of the memory.
Abstract:
Disclosed herein, among other things, are apparatus and methods to provide improved control of hearing assistance devices and hearing assistance applications. The present apparatus and method can be deployed on a hearing aid, a device in communication with the hearing aid, or on both. In one embodiment a programmable control, including, but not limited to a button or switch or sensor or microphone is adapted to provide control of the function or settings of the hearing aid. In one embodiment, a programmable control for a device including, but not limited to a button or switch or sensor or microphone is adapted to provide wireless control of the function or settings of the hearing aid. In various embodiments, a programmable control for the hearing aid and a programmable control of the device are used to provide wireless control of the function or settings of the hearing aid.
Abstract:
Ear-level full duplex audio communication systems each include one or two ear attachment devices, such as in-the-ear (ITE) or behind-the-ear (BTE) devices, that wirelessly communicates to a remote device such as a computer, a personal digital assistant (PDA), a cellular phone, a walkie talkie, or a language translator. When used as a hearing aid, such a system allows a hearing impaired individual to communicate with or through the remote device, such as to talk to another person through a cellular phone. When being used as an ear piece wirelessly extended from the remote device, such system allows an individual with normal hearing to privately communicate with or through the remote device without the need of holding the device or wearing any device wired to the remote device. Each ear attachment device includes a voice operated exchange (VOX), housed within the device, to preserve energy and hence, maximize the period between battery replacement or recharges. The VOX also gates various sounds detected by the system to control possible echoes and ringing.
Abstract:
A hearing aid includes a first half shell and a second shell attached to the first shell. A microphone, battery, electronics, a receiver and a flexible tip are mounted within a housing formed by the first half shell and the second half shell. A mechanical securing mechanism, located on the first half shell and the second half shell, attaches the first half shell to the second half shell. A flexible tip for a hearing aid includes a tip portion, a sound port attached to the tip portion and a vent formed in the flexible tip. The vent provides static pressure equilibrium between an ear canal and an ambient pressure.
Abstract:
An apparatus for and method of employing an electronic hearing aid device to assist a hearing impaired patient. The resonance curve of the outer auditory canal of the patient is determined. A device in accordance with the present invention is tuned to a frequency response curve which matches the measured resonance curve. The device is tuned by adjusting the overshoot of a low pass filter stage which is interposed between the microphone input and a class D output stage.
Abstract:
An improved hearing aid programming system with a host computer for providing at least one hearing aid program and having at least one personal computer memory card international association (PCMCIA) defined port in combination with a PCMCIA card inserted in the port and arranged for interacting with the host computer for controlling programming of a hearing aid. The host computer provides power and ground to the PCMCIA card and provides for downloading the hearing aid programming software to the PCMCIA card upon initialization. A microprocessor on the PCMCIA card executes the programming software. A hearing aid interface for adjusting voltage levels and impedance levels is adapted for coupling signals to the hearing aid being programmed. A portable programming arrangement utilizes a portable multiprogram unit to store one or more hearing aid programs, and having an electrical interconnection to a portable multiprogram unit interface, whereby one or more programs selected at the host computer can be downloaded and stored in the portable multiprogram unit. The portable multiprogram unit includes a wireless interconnection for transmitting selected ones of the programs to hearing aids to be programmed.
Abstract:
An improved hearing aid programming system with a host computer for providing at least one hearing aid program and having at least one personal computer memory card international association (PCMCIA) defined port in combination with a PCMCIA card inserted in the port and arranged for interacting with the host computer for controlling programming of a hearing aid. The host computer provides power and ground to the PCMCIA card and provides for downloading the hearing aid programming software to the PCMCIA card upon initialization. A microprocessor on the PCMCIA card executes the programming software. A hearing aid interface for adjusting voltage levels and impedance levels is adapted for coupling signals to the hearing aid being programmed. A portable programming arrangement utilizes a portable multiprogram unit to store one or more hearing aid programs, and having an electrical interconnection to a portable multiprogram unit interface, whereby one or more programs selected at the host computer can be downloaded and stored in the portable multiprogram unit. The portable multiprogram unit includes a wireless interconnection for transmitting selected ones of the programs to hearing aids to be programmed.
Abstract:
A non-invasive, non-ionizing, reproducible method and apparatus for analyzing the normal and abnormal function of human and animal joints is presented. The method includes passing vibrations through the joint to be analyzed and measuring the modulation of the amplitude and the phase characteristics of the vibrations caused by movement of the joint through a predetermined cycle. More specifically, the method includes transmitting a sinusoidal vibratory signal through a joint structure to be analyzed and measuring the amplitude and phase of the signal received on the opposite side of the joint during a prescribed movement of the joint both with and without the application of external mechanical forces, and comparing the profile of the modulated signal to the profiles obtained from reference joints. The apparatus includes a piezoelectric or magnetic transducer adapted to be positioned on one side of a joint to be analyzed to provide the vibrational signal and one or more receiving transducers placed on the other side of the joint to detect the modulated vibratory signal produced by the associated joint structure.
Abstract:
The present subject matter provides a system for wireless communications between one or more wireless audio devices and other electronics for providing a rich set of streaming audio, control, programming and enhanced hearing functions.
Abstract:
A system for programming one or more hearing aids with a host computer, the system including a hearing aid programmer for wireless communications with the host computer. In various embodiments, the hearing aid programmer has at least one interface connector for communication with at least one hearing aid. Additionally, in various embodiments, the system includes a wireless interface adapted for connecting to the at least one interface connector of the hearing aid programmer, the wireless interface further adapted for wireless communication with one or more hearing aids. Varying embodiments of the present subject matter include a wireless interface which contains signal processing electronics, a memory connected to the signal processing electronics; and a wireless module connected to the signal processing electronics and adapted for wireless communications.