Abstract:
An object of the present invention is to protect exposed inspection pads with a conductive tape when the application of resin is ceased and to enhance the reliability of the inspection pads. A liquid crystal display device is provided with a transparent electrode formed on a superficial side of a CF board, a grounded electrode, an inspection pad and a switching device between the inspection pad and a signal line or a scanning line respectively formed in a terminal area a TFT board and a conductive tape that electrically connects the transparent electrode of the CF board, the grounded electrode and the inspection pad respectively of the TFT board.
Abstract:
This invention aims at reducing the probability of short-circuiting between terminals in a display device in which an IC driver is connected by COG. Terminals for connection with the IC driver are formed in a terminal region of a TFT substrate. The terminals are each comprised of a terminal metal, a first through-hole formed in a first insulation film, a second through-hole formed in a second insulation film, a first ITO formed in the first through-hole and being in contact with the terminal metal, and a second ITO formed over the first ITO. The second ITO is formed within an area where the second ITO is in contact with the first ITO but is not formed outside the second through-hole. This ensures that the distance between the ITOs of the adjacent terminals can be enlarged, whereby the probability of short-circuiting between the terminals can be lowered.
Abstract:
A black matrix is formed to an edge of a counter substrate. Then, a BM slit, which is an area where the black matrix is not present, is formed in the periphery of a seal material in order to prevent water or moisture from penetrating from the interface between the counter substrate and the black matrix. Then, a light shielding metal is formed in a layer other than a lead line layer, on the side of a TFT substrate, in order to prevent light from leaking from the BM slit. With this structure, it is possible to prevent the light from leaking from the BM slit around a screen. As a result, the degradation of the contrast can be prevented in the periphery of the screen.
Abstract:
A display panel includes a plurality of pads configured to provide a driver thereon, a plurality of first contacts respectively connected to the plurality of pads, a plurality of second contacts respectively provided so as to be opposed to the plurality of first contacts, a semiconductor layer configured to form a plurality of polysilicon films that are respectively extended to connect the plurality of first contacts and the plurality of second contacts to each other, and a gate metal layer different from the polysilicon layer. Each of a plurality of transistors is formed at a position where the gate metal layer traverses the polysilicon layer, and a plurality of transistor groups of the plurality of transistors are arranged in a zigzag pattern. Each of the plurality of transistor groups include three adjacent transistors of the plurality of transistors.
Abstract:
A three-dimensional display device prevents a barrier wire breakage failure and includes a parallax barrier panel resistant to static electricity. The 3D display device has a liquid crystal parallax barrier panel disposed over a display panel. The parallax barrier panel has a first substrate having an electrode formed flat thereon and a second substrate having a display area, the first substrate and the second substrate having liquid crystal sandwiched therebetween. The second substrate has barrier electrodes extending in a first direction and arrayed at a first pitch in a second direction, has a first bus electrode extending in the second direction outside the display area along a first side thereof, and has a second bus electrode extending in the second direction outside the display area along a second side thereof opposite to the first side. The barrier electrodes are connected to the first and the second bus electrodes.
Abstract:
A display device includes a display area and a terminal area formed outside the display area. The display area has a plurality of scanning lines and a plurality of video signal lines that cross the scanning lines. The terminal area has a first terminal having a semiconductor chip connected thereto, a first line, a second line, and an inspection thin-film transistor. The inspection thin-film transistor has a gate electrode connected to the first line, a source electrode connected to the second line, and a drain electrode. The first terminal is connected to any of the plurality of scanning lines and the plurality of video signal lines.
Abstract:
A display device includes a substrate having a display region with signal lines within the display region connected to respective terminals in a terminal group outside the display region via terminal wires, and an IC driver having bumps facing and connected to the terminals via an isotropic conductive film. The terminal wires have first, second, third and fourth terminal wires, and the terminals have a first terminal connected to the first terminal wire, a second terminal connected to the second terminal wire, a third terminal connected to the third terminal wire, and a fourth terminal connected to the fourth terminal wire. The first terminal and the second terminal are staggered with respect to each other, the second terminal and the third terminal are staggered with respect to each other, and the third terminal and the fourth terminal are staggered with respect to each other.
Abstract:
A display device includes a substrate having a display region with signal lines within the display region connected to respective terminals in a terminal group outside the display region via terminal wires, and an IC driver having bumps facing and connected to the terminals via an isotropic conductive film. The terminal wires have first, second, third and fourth terminal wires, and the terminals have a first terminal connected to the first terminal wire, a second terminal connected to the second terminal wire, a third terminal connected to the third terminal wire, and a fourth terminal connected to the fourth terminal wire. The first terminal and the second terminal are staggered with respect to each other, the second terminal and the third terminal are staggered with respect to each other, and the third terminal and the fourth terminal are staggered with respect to each other.
Abstract:
A display panel includes a plurality of pads configured to provide a driver thereon, a plurality of first contacts respectively connected to the plurality of pads, a plurality of second contacts respectively provided so as to be opposed to the plurality of first contacts, a semiconductor layer configured to form a plurality of polysilicon films that are respectively extended to connect the plurality of first contacts and the plurality of second contacts to each other, and a gate metal layer different from the polysilicon layer. Each of a plurality of transistors is formed at a position where the gate metal layer traverses the polysilicon layer, and a plurality of transistor groups of the plurality of transistors are arranged in a zigzag pattern. Each of the plurality of transistor groups include three adjacent transistors of the plurality of transistors.
Abstract:
This invention envisages flexible wiring substrate terminals serving to connect with the wires for preventing dielectric breakdown caused by static electricity during the manufacturing process, and reducing the number of the flexible wiring substrate terminals. On a mother TFT substrate, signal lines extend over each liquid crystal cell in a manner flanking a scribe line between the adjacent liquid crystal cells. The signal lines of each liquid crystal cell are connected with connecting lines striding the scribe line. This reduces the number of static electricity countermeasure wires extending from the flexible wiring substrate terminals of each liquid crystal cell. Once completed, the individual liquid crystal cells are separated from one another, with no adverse effects caused by the connecting lines.