摘要:
A method of chalcogenide device formation includes treatment of the surface upon which the chalcogenide material is deposited. The treatment reduces or eliminates native oxides and other contaminants from the surface, thereby increasing the adhesion of the chalcogenide layer to the treated surface, eliminating voids between the chalcogenide layer and deposition surface and reducing the degradation of chalcogenide material due to the migration of contaminants into the chalcogenide.
摘要:
A programmable resistance, chalcogenide, switching or phase-change material device includes a substrate with a plurality of stacked layers including a conducting bottom electrode layer, an insulative layer having an opening formed therein, an active material layer deposited over both the insulative layer, within the opening, and over selected portions of the bottom electrode, and a top electrode layer deposited over the active material layer. The device uses temperature and pressure control methods to increase surface mobility in an active material layer, thus providing complete coverage or fill of the openings in the insulative layer, selected exposed portions of the bottom electrode layer, and the insulative layer.
摘要:
A programmable resistance, chalcogenide, switching or phase-change material device includes a substrate with a plurality of stacked layers including a conducting bottom electrode layer, an insulative layer having an opening formed therein, an active material layer deposited over both the insulative layer, within the opening, and over selected portions of the bottom electrode, and a top electrode layer deposited over the active material layer. The device uses temperature and pressure control methods to increase surface mobility in an active material layer, thus providing complete coverage or fill of the openings in the insulative layer, selected exposed portions of the bottom electrode layer, and the insulative layer.
摘要:
A radial memory device includes a phase-change material, a first electrode in electrical communication with the phase-change material, the first electrode having a substantially planar first area of electrical communication with the phase-change material. The radial memory device also includes a second electrode in electrical communication with the phase-change material, the second electrode having a second area of electrical communication with the phase-change material, the second area being laterally spacedly disposed from the first area and substantially circumscribing the first area.Further, a method of making a memory device is disclosed. The steps include depositing a first electrode, depositing a first insulator, configuring the first insulator to define a first opening. The first opening provides for a generally planar first contact of the first electrode. The method further including the steps of depositing a phase-change material, depositing a second insulator, configuring the second insulator, depositing a second electrode having a second contact laterally displaced from said first contact, and configuring said second electrode.
摘要:
A method of programming a multi-layer chalcogenide electronic device. The device includes an active region in electrical communication with two terminals, where the active region includes two or more layers. The method includes providing an electrical signal between the two terminals, where the electrical signal alters an electrical characteristic of a layer remote from one of the terminals. In one embodiment, the layer remote from the terminal is a chalcogenide material and the electrical characteristic is resistance. In another embodiment, an electrical characteristic of the layer in contact with the terminal is also altered. The alteration of an electrical characteristic may be caused by a transformation of a chalcogenide material from one structural state to another structural state.
摘要:
A programmable resistance memory combines multiple cells into a block that includes one or more shared electrodes. The shared electrode configuration provides additional thermal isolation for the active region of each memory cell, thereby reducing the current required to program each memory cell.
摘要:
A multi-layer chalcogenide, memory or switching device. The device includes an active region disposed between a first terminal and a second terminal. The active region includes a first layer and a second layer, where one of the layers is a heterogeneous layer that includes an operational component and a promoter component. The other layer may be a homogeneous or heterogeneous layer. In exemplary embodiments, the operational component is a chalcogenide or phase change material and the promoter component is an insulating or dielectric material. Inclusion of the promoter component provides beneficial performance characteristics such as a reduction in reset current or minimization of formation requirements.
摘要:
A memory device includes a phase-change material and a first electrode in electrical communication with the phase-change material. Also included is a second electrode in electrical communication with the phase-change material and a dielectric layer. The dielectric layer is disposed between the first electrode and the second electrode. The dielectric layer has an opening therethrough. The phase-change material is disposed on both sides of the dielectric layer and within the opening. Electrical communication within the device is by means of virtual contacts.
摘要:
A non-volatile memory element includes a first interlayer insulation layer 11 having a first through-hole 11a, a second interlayer insulation layer 12 having a second through-hole 12a formed on the first interlayer insulation layer 11, a bottom electrode 13 provided in the first through-hole 11, recording layer 15 containing phase change material provided in the second through-hole 12, a top electrode 16 provided on the second interlayer insulation layer 12, and a thin-film insulation layer 14 formed between the bottom electrode 13 and the recording layer 15. In accordance with this invention, the diameter D1 of a bottom electrode 13 buried in a first through-hole 11a is smaller than the diameter D2 of a second through-hole 12a, thereby decreasing the thermal capacity of the bottom electrode 13. Therefore, when a pore 14a is formed by dielectric breakdown in a thin-film insulation layer 14 and the vicinity is used as a heating region, the amount of heat escaping to the bottom electrode 13 is decreased, resulting in higher heating efficiency.
摘要:
A method of programming an electrical variable resistance memory device. When applied to variable resistance memory devices that incorporate a phase-change material as the active material, the method utilizes a plurality of crystalline programming states. The crystalline programming states are distinguishable on the basis of resistance, where the resistance values of the different states are stable with time and exhibit little or no drift. As a result, the programming scheme is particularly suited to multilevel memory applications. The crystalline programming states may be achieved by stabilizing crystalline phases that adopt different crystallographic structures or by stabilizing crystalline phases that include mixtures of two or more distinct crystallographic structures that vary in the relative proportions of the different crystallographic structures. The programming scheme incorporates at least two crystalline programming states and further includes at least a third programming state that may be a crystalline, amorphous or mixed crystalline-amorphous state.