摘要:
The disclosure provides in one embodiment a method of fabricating a lead zirconate titanate (PZT) nanoparticle ink based piezoelectric sensor. The method has a step of formulating a lead zirconate titanate (PZT) nanoparticle ink. The method further has a step of depositing the PZT nanoparticle ink onto a substrate via an ink deposition process to form a PZT nanoparticle ink based piezoelectric sensor.
摘要:
The disclosure provides in one embodiment a method of fabricating a lead zirconate titanate (PZT) nanoparticle ink based piezoelectric sensor. The method has a step of formulating a lead zirconate titanate (PZT) nanoparticle ink. The method further has a step of depositing the PZT nanoparticle ink onto a substrate via an ink deposition process to form a PZT nanoparticle ink based piezoelectric sensor.
摘要:
Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineralizer, that undergoes a hydrothermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydrothermal process.
摘要:
Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineralizer, that undergoes a hydro thermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydro thermal process.
摘要:
Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineraliser, that undergoes a hydro thermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydro thermal process.
摘要:
Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineraliser, that undergoes a hydrothermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydrothermal process.
摘要:
Disclosed are methods and systems for improving actuator performance by reducing tensile stresses in piezoelectric thin films. In one embodiment, a piezoelectric actuator includes a substrate, a first electrode positioned on the substrate, a piezoelectric thin film positioned on the first electrode, and a second electrode positioned on the piezoelectric thin film. The displacement capability of the actuator is enhanced by reducing the tensile stresses of the piezoelectric thin film. In some embodiments, a constant DC voltage applied to the piezoelectric actuator generates compressive in-plane stresses, which counteract the tensile in-plane stresses. As a result, the overall tensile stresses in the actuator are reduced, and the actuator displacement is improved.
摘要:
Electrodes and electric double layer capacitance (EDLC) devices containing an activated carbon cryogel having a tunable pore structure are disclosed. The disclosed electrodes and devices find utility in any number of electrical energy storage and distribution applications.
摘要:
Methods for forming aggregates of nanomaterials are provided. The aggregates are formed from a liquid dispersion of the nanomaterials in a liquid. The dispersion is aerosolized and the liquid removed from the aerosolized dispersion to provide the aggregates. The aggregates are useful as a photoelectric layer and/or a light-dispersive layer in dye-sensitized solar cells.
摘要:
The invention provides devices, systems, and methods for detecting an analyte vapor. Particularly, electronegative analyte vapors, such as those vapors evolving from explosive compounds, are typical analytes detected the devices. The devices operate using a resistivity change mechanism wherein a nanostructured chemiresistive material undergoes a resistivity change in the presence of an analyte vapor. A resistivity change indicates the presence of an analyte.