摘要:
A vehicle includes at least one reconfigurable system having a plurality of selectively variable parameters, and a controller that is operatively connected to the at least one reconfigurable system to control the values of the plurality of selectively variable parameters. The controller is also configured to receive data indicative of physical characteristics of a person from at least one data storage medium, and configured to determine values of the selectively variable parameters according to a predetermined algorithm based on the data indicative of physical characteristics of a person. The controller is also configured to cause the selectively variable parameters to assume the determined values.
摘要:
A vehicle includes at least one reconfigurable system having a plurality of selectively variable parameters, and a controller that is operatively connected to the at least one reconfigurable system to control the values of the plurality of selectively variable parameters. The controller is also configured to receive data indicative of physical characteristics of a person from at least one data storage medium, and configured to determine values of the selectively variable parameters according to a predetermined algorithm based on the data indicative of physical characteristics of a person. The controller is also configured to cause the selectively variable parameters to assume the determined values.
摘要:
A system and method for classifying the optimization of safety features on a vehicle for a driver of the vehicle based on the height and mass of the driver. The method includes determining a number of basic driver sizes based on driver height and mass and determining a driver's seat position for each basic driver height. The method also identifies a set of tunable design variables that are used to adjust the safety features of the vehicle and performs design optimization analysis to identify an optimal design for the vehicle safety features for each of the basic driver sizes. The method then identifies the design from the optimal designs that provides the best performance for randomly selected reference drivers and classifies all drivers into a predetermined number of classifications where each classification represents a particular optimal design.
摘要:
A system and method for classifying the optimization of safety features on a vehicle for a vehicle passenger based on the passenger seating position and passenger body mass index. The method includes determining a number of basic passenger sizes based on the passenger height and mass and determining a number of passenger seating positions. The method further includes identifying a set of tunable design variables that are used to adjust the vehicle safety features, and performing design optimization analysis for identifying optimal designs, called basic optimal designs, for the vehicle safety features for each of the basic passenger sizes and the predetermined seating positions. The method identifies the design from the basic optimal designs that provides the best performance for randomly selected reference passengers in randomly selected seating positions, and classifies all passengers in their actual seating positions into one of the predetermined number of classifications where each classification represents a particular basic optimal design.
摘要:
A system and method for classifying the optimization of safety features on a vehicle for a driver of the vehicle based on the height and mass of the driver. The method includes determining a number of basic driver sizes based on driver height and mass and determining a driver's seat position for each basic driver height. The method also identifies a set of tunable design variables that are used to adjust the safety features of the vehicle and performs design optimization analysis to identify an optimal design for the vehicle safety features for each of the basic driver sizes. The method then identifies the design from the optimal designs that provides the best performance for randomly selected reference drivers and classifies all drivers into a predetermined number of classifications where each classification represents a particular optimal design.
摘要:
A seat assembly for a vehicle includes a lower seat portion and a seatback portion. The seatback portion is selectively movable to vary the reclination angle of the seatback portion. The seat assembly is configured so that a first part of the lower seat portion rises relative to a second part of the lower seat portion so that the lower seat portion acts as an occupant restraint when a predetermined condition exists. Exemplary predetermined conditions include the reclination angle changing, the reclination angle exceeding a predetermined amount, and conditions indicative of an elevated risk of vehicle impact.
摘要:
An energy-absorbing hood assembly for a vehicle includes an upper layer having a plurality of polyhedral protuberances extending outward therefrom, and preferably a lower layer. The protuberances are disposed between the upper and lower layers, and preferably arranged in longitudinal and transverse rows. The polyhedral protuberances are adapted to absorb and attenuate crush loads imparted to the hood assembly and resultant forces imparted to an object resulting from an impact between the object and the hood assembly. The polyhedral protuberances define various structural and material characteristics along different regions of the hood assembly that are selectively configured to provide different levels of absorption and attenuation of the crush loads and resultant forces. The lower layer is preferably configured to controllably fail at a first predetermined threshold crush load and the polyhedral protuberances are each configured to controllably deform at a second predetermined threshold crush load.
摘要:
An energy-absorbing hood assembly for a vehicle includes upper and lower layers and a middle panel. The upper and lower layers have first and second interface surfaces, respectively. The middle panel has opposing first and second surfaces defining a corrugated profile having a plurality of bonding surfaces, the bonding surfaces being attached to the first and second interface surfaces to thereby define a plurality of laterally oriented channels. The corrugated profile further defines a height and wavelength along a substantial portion of the hood assembly, each being configured to be variably tunable to provide different predetermined levels of absorption and attenuation of kinetic energy imparted to the hood assembly by objects upon impact therebetween. Preferably, the hood assembly also includes an upper hood panel having an inner surface secured to the upper layer. Ideally, the corrugated profile is a trapezoidal waveform profile.
摘要:
An energy-absorbing hood assembly for a vehicle includes upper, lower, and middle panels. The upper and lower panels respectively include first and second interface surfaces. The upper panel is preferably secured to an inner surface of an outer panel. The middle panel has opposing first and second surfaces defining an asymmetric waveform profile, preferably having a polygonal geometry. The middle panel member is secured to the first and second interface surfaces at preselected locations along the upper and lower surfaces, thereby defining a plurality of laterally oriented asymmetric channels. The asymmetric waveform profile is configured with distinct amplitudes and wavelengths along different regions of the hood assembly, each configured to provide different predetermined levels of absorption and attenuation of kinetic energy imparted to the hood assembly by objects upon impact therebetween. Ideally, the lower and middle panels are respectively configured to controllably fail at first and second predetermined crush loads.
摘要:
An energy-absorbing hood assembly for a vehicle includes upper, lower, and middle panels. The upper and lower panels respectively include first and second interface surfaces. The upper panel is preferably secured to an inner surface of an outer panel. The middle panel has opposing first and second surfaces defining an asymmetric waveform profile, preferably having a polygonal geometry. The middle panel member is secured to the first and second interface surfaces at preselected locations along the upper and lower surfaces, thereby defining a plurality of laterally oriented asymmetric channels. The asymmetric waveform profile is configured with distinct amplitudes and wavelengths along different regions of the hood assembly, each configured to provide different predetermined levels of absorption and attenuation of kinetic energy imparted to the hood assembly by objects upon impact therebetween. Ideally, the lower and middle panels are respectively configured to controllably fail at first and second predetermined crush loads.