摘要:
A lighting system includes at least one light emitting diode and a coating of matrix material having at least one glass-coated quantum dot in a base material. The at least one glass-coated quantum dot may be selected from at least one of a group II-VI materials, III-V materials, IV-VI materials, I-III-VI materials and combinations of such materials. The matrix material may be silicone, and the lighting system may include a light bulb replacement fixture including a threaded screw electrically connected to the light emitting diode.
摘要:
Light emitting diodes (LEDs) comprising semiconductor nanocrystals, or more specifically quantum dots, used as a stable phosphor are presented. The result is a color tunable LED with a lifetime of at least 1,000 hours, or at least 5,000 hours.
摘要:
Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.
摘要:
Solid state lighting devices containing quantum dots dispersed in polymeric or silicone acrylates and deposited over a light source. Solid state lighting devices with different populations of quantum dots either dispersed in matrix materials or not are also provided. Also provided are solid state lighting devices with non-absorbing light scattering dielectric particles dispersed in a matrix material containing quantum dots and deposited over a light source. Methods of manufacturing solid state lighting devices containing quantum dots are also provided.
摘要:
Solid state lighting devices containing quantum dots dispersed in polymeric or silicone acrylates and deposited over a light source. Solid state lighting devices with different populations of quantum dots either dispersed in matrix materials or not are also provided. Also provided are solid state lighting devices with non-absorbing light scattering dielectric particles dispersed in a matrix material containing quantum dots and deposited over a light source. Methods of manufacturing solid state lighting devices containing quantum dots are also provided.
摘要:
Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.
摘要:
Light-emitting devices are provided that incorporate one or more underlying LED chips or other light sources and a layer having one or more populations of nanoparticles disposed over the light source. The nanoparticles may absorb some light emitted by the underlying source, and re-emit light at a different level. By varying the type and relative concentration of nanoparticles, different emission spectra may be achieved. White light and specialty-color emission may be achieved. Devices also may include multiple LED chips, with nanoparticles disposed over one or more underlying chips in an array.
摘要:
The present invention relates to a novel etching media in the form of printable, homogeneous etching pastes with non-Newtonian flow properties for the improved etching of inorganic oxides and silicon surfaces and which allow to prepare smaller features.
摘要:
A shaped article comprising a plurality of semiconductor nanocrystals. Devices incorporating shaped articles are also provided. Methods of manufacturing shaped articles by various molding processes are also provided.
摘要:
A micronized semiconductor nanocrystal complex including a plurality of semiconductor nanocrystals embedded in a first matrix material wherein the first matrix material is a micronized polymer. The micronized semiconductor nanocrystal complex can be used in or include inks, paints, dyes, LEDs, taggants, tracers and cosmetics. The present application further provides methods of making micronized semiconductor nanocrystal complexes.