摘要:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
摘要:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
摘要:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
摘要:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
摘要:
A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
摘要:
A system (18) for controlling a safety system (44) of an automotive vehicle (10) includes a longitudinal acceleration sensor (36), a vehicle speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor, and a controller (26). The controller (26) determines a reference pitch in response to the longitudinal acceleration signal and the vehicle speed signal and a reference roll angle in response to the yaw rate signal, the wheel speed signal and the lateral acceleration signal. The controller (26) determines a roll stability index and a pitch stability index. The controller (26) determines an adjusted pitch angle in response to the reference pitch angle and the pitch stability index and an adjusted roll angle in response to the reference roll angle and the roll stability index. The controller (26) controls the safety system (44) in response to the adjusted roll angle and the adjusted pitch angle.
摘要:
A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
摘要:
A method and system for controlling vehicle stability may comprise determining whether a vehicle is oversteering or understeering and, if the vehicle is oversteering or understeering, determining an amount by which to reduce a speed of the vehicle to correct for understeering or oversteering and applying brake pressure to at least the rear brakes of the vehicle to reduce vehicle speed. The method and system also may comprise determining an engine torque reduction amount based on vehicle oversteer or understeer conditions, reducing engine torque by the determined amount or to zero if the determined amount of engine torque reduction is greater than an actual engine torque, and applying braking to at least the rear brakes of the vehicle if the determined amount of engine torque reduction is greater than the actual engine torque.
摘要:
A system and method for detecting a fault in a pitch rate sensor onboard a vehicle. Signals, including a steering wheel angle, a yaw rate, a roll rate, a longitudinal acceleration, a lateral acceleration, and a vehicle speed, are processed in a controller to validate a pitch rate signal. Upon detection of a fault in the pitch rate signal, the system and method will determine a process in which to minimize negative effects of the pitch sensor fault. The system and method will then direct the controller to select a process, such as a direct shutdown, a slow shutdown or replace a signal, in a relevant control system, based on the determination.
摘要:
A yaw stability control system for a vehicle detects and eliminates the vehicle yaw angle resulting from a body-force-disturbance and returns the vehicle to a pre disturbance heading. A yaw rate module generates a signal indicative of the vehicle yaw rate error. A yaw angle error module is triggered in response to a body-force-disturbance being detected by a body-force-disturbance detection unit, and performs integrations of the yaw rate signals to calculate a yaw angle error in order to obtain a correction of the vehicle yaw angle resulting from the body-force-disturbance. A yaw control module uses the yaw angle error in combination with the yaw rate error for a limited time period to generate yaw control signals that are sent to the vehicle brakes and/or active steering system for performing vehicle yaw stability control operations a signal to perform a body-force-disturbance yaw stability control operation for.