摘要:
The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small. In addition, an impurity atom strengthens an ion adsorption capability of the ultra-thin single crystal film, so that an ion implantation dose and the annealing temperature can be lowered in the preparation procedure, thereby effectively reducing the damage caused by the implantation to the top film, and achieving objectives of improving production efficiency and reducing the production cost.
摘要:
A silicon/germanium (SiGe) heterojunction Tunnel Field Effect Transistor (TFET) and a preparation method thereof are provided, in which a source region of a device is manufactured on a silicon germanium (SiGe) or Ge region, and a drain region of the device is manufactured in a Si region, thereby obtaining a high ON-state current while ensuring a low OFF-state current. Local Ge oxidization and concentration technique is used to implement a Silicon Germanium On Insulator (SGOI) or Germanium On Insulator (GOI) with a high Ge content in some area. In the SGOI or GOI with a high Ge content, the Ge content is controllable from 50% to 100%. In addition, the film thickness is controllable from 5 nm to 20 nm, facilitating the implementation of the device process. During the oxidization and concentration process of the SiGe or Ge and Si, a SiGe heterojunction structure with a gradient Ge content is formed between the SiGe or Ge and Si, thereby eliminating defects. The preparation method according to the present invention has a simple process, which is compatible with the CMOS process and is applicable to mass industrial production.
摘要:
The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small. In addition, an impurity atom strengthens an ion adsorption capability of the ultra-thin single crystal film, so that an ion implantation dose and the annealing temperature can be lowered in the preparation procedure, thereby effectively reducing the damage caused by the implantation to the top film, and achieving objectives of improving production efficiency and reducing the production cost.
摘要:
The present invention provides a method for preparing a GOI chip structure, where, in the method, first, a SiGe on insulator (SGOI) chip structure is made by using a SMART CUT technology, and then, germanium condensation technology is performed on the SGOI chip structure, so as to obtain a GOI chip structure. Because the SGOI made by the Smart-Cut technology basically has no misfit dislocation in an SGOI/BOX interface, the threading dislocation density of the GOI is finally reduced. A technique of the present invention is simple, the high-quality GOI chip structure can be implemented, and the germanium condensation technology is greatly improved. An ion implantation technology and an annealing technology are quite mature techniques in the current semiconductor industry, so that such a preparation method greatly improves the possibility of wide use of the germanium concentration technology in the semiconductor industry.
摘要:
The present invention provides a method for preparing a GOI chip structure, where, in the method, first, a SiGe on insulator (SGOI) chip structure is made by using a Smart-Cut technology, and then, germanium condensation technology is performed on the SGOI chip structure, so as to obtain a GOI chip structure. Because the SGOI made by the Smart-Cut technology basically has no misfit dislocation in an SGOI/BOX interface, the threading dislocation density of the GOI is finally reduced. A technique of the present invention is simple, the high-quality GOI chip structure can be implemented, and the germanium condensation technology is greatly improved. An ion implantation technology and an annealing technology are quite mature techniques in the current semiconductor industry, so that such a preparation method greatly improves the possibility of wide use of the germanium concentration technology in the semiconductor industry.
摘要:
The present invention discloses a method of NiSiGe epitaxial growth by introducing Al interlayer, comprising the deposition of an Al thin film on the surface of SiGe layer, subsequent deposition of a Ni layer on Al thin film and then the annealing process for the reaction between Ni layer and SiGe material of SiGe layer to form NiSiGe material. Due to the barrier effect of Al interlayer, NiSiGe layer features a single crystal structure, a flat interface with SiGe substrate and a thickness of up to 0.3 nm, significantly enhancing interface performance.
摘要:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
摘要:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
摘要:
A Ge and Si hybrid material accumulation mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of p-type Ge and n-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an accumulation mode, current flows through the overall racetrack-shaped channel. The disclosed device has high carrier mobility, high device drive current, and maintains the electrical integrity of the device. Meanwhile, polysilicon gate depletion and short channel effects are prevented.
摘要:
A hybrid orientation inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Si (110) and p-type Si(100), respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. The device structure according to the prevent invention is quite simple, compact and highly integrated. In an inversion mode, the devices have different orientation channels, the GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, and prevent polysilicon gate depletion and short channel effects.