Abstract:
A method and apparatus for enhancing uplink operations in a CDMA system is provided. The method may include receiving a rate control value and a transmit power value from a node B, wherein the rate control value is determined through uplink scheduling by the node B, and wherein the transmit power value is selected by the node B to maintain a signal to interference plus noise (SINR) metric within a threshold for a pilot channel, transmitting control channel information at a first power level determined from the transmit power value, and using a first average power tracking unit to generate the first selected transmit power and transmitting data channel information at a second power level determined from both the rate control value and the transmit power value.
Abstract:
A method and apparatus for enhancing uplink operations in a CDMA system is provided. The method may include receiving a rate control value and a transmit power value from a node B, wherein the rate control value is determined through uplink scheduling by the node B, and wherein the transmit power value is selected by the node B to maintain a signal to interference plus noise (SINR) metric within a threshold for a pilot channel, transmitting control channel information at a first power level determined from the transmit power value, and using a first average power tracking unit to generate the first selected transmit power and transmitting data channel information at a second power level determined from both the rate control value and the transmit power value.
Abstract:
A method and apparatus for wireless communication may provide a multi-link PDCP sublayer in a radio network controller capable of allocating PDCP PDUs among a plurality of RLC entities for use in a multi-point HSDPA network. Some aspects of the disclosure address issues relating to out-of-order delivery of the PDCP PDUs to a UE, such as unnecessary retransmissions. That is, the disclosed multi-link PDCP may be capable of distinguishing between sequence number gaps that are caused by physical layer transmission failures and those caused merely by skew.
Abstract:
A communication device configured for dynamic switching between Multiple-Input and Multiple-Output (MIMO) and Dual-Cell High Speed Downlink Packet Access (DC HSDPA) is disclosed. The communication device includes a processor and instructions stored in memory. The communication device begins a connection setup for one or more wireless communication devices, obtains MIMO and DC HSDPA capabilities for the one or more wireless communication devices and optimizes the coexistence of MIMO and DC HSDPA.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.
Abstract:
A method and apparatus for wireless communication may provide a multi-link PDCP sublayer in a radio network controller capable of allocating PDCP PDUs among a plurality of RLC entities for use in a multi-point HSDPA network. Some aspects of the disclosure address issues relating to out-of-order delivery of the PDCP PDUs to a UE, such as unnecessary retransmissions. That is, the disclosed multi-link PDCP may be capable of distinguishing between sequence number gaps that are caused by physical layer transmission failures and those caused merely by skew.
Abstract:
A communication device configured for dynamic switching between Multiple-Input and Multiple-Output (MIMO) and Dual-Cell High Speed Downlink Packet Access (DC HSDPA) is disclosed. The communication device includes a processor and instructions stored in memory. The communication device begins a connection setup for one or more wireless communication devices, obtains MIMO and DC HSDPA capabilities for the one or more wireless communication devices and optimizes the coexistence of MIMO and DC HSDPA.
Abstract:
A method and system for improving the reception of uplink transmissions in a heterogeneous wireless communication system includes a high-power node such as a macro-cell and a low-power node such as a femto-cell or pico-cell. To address an uplink imbalance where a nearby low-power node power controls a UE such that uplink transmissions of an HSDPA control channel are poorly received at the serving cell, an RNC can instruct the UE to boost its uplink transmit power, remove the UE from soft handover, or disable power control of the UE by the low-power node. To address inter-cell interference, the RNC can limit the UE transmit power and/or enable the victim cell to suppress the interference. Further, a common control channel can be used to power control UEs outside of the convention set of UEs available for power control.
Abstract:
A method and system for improving the reception of uplink transmissions in a heterogeneous wireless communication system includes a high-power node such as a macro-cell and a low-power node such as a femto-cell or pico-cell. To address an uplink imbalance where a nearby low-power node power controls a UE such that uplink transmissions of an HSDPA control channel are poorly received at the serving cell, an RNC can instruct the UE to boost its uplink transmit power, remove the UE from soft handover, or disable power control of the UE by the low-power node. To address inter-cell interference, the RNC can limit the UE transmit power and/or enable the victim cell to suppress the interference. Further, a common control channel can be used to power control UEs outside of the convention set of UEs available for power control.