Abstract:
Use of a proton exchange membrane M in proton exchange membrane fuel cells, wherein the membrane M comprises a blend of (I) at least one polybenzimidazole polymer PBI which comprises, in polymerized form, at least 90 mol-% monomeric units U of formula (I) and/or (II), based on the total amount of monomeric units of the polybenzimidazole polymer PBI, wherein Y is a substituted element selected from O and S; or Y is a single carbon-carbon bond; Z is selected from the group consisting of divalent C1-C10 alkanediyl; divalent C2-C10 alkenediyl; divalent C6-C15 aryl; divalent C5-C15 heteroaryl; divalent C5-C15 heterocyclyl; divalent C6-C19 aryl sulfone; and divalent C6-C19 aryl ether; and wherein the total amount of monomeric units U in the polybenzimidazole polymer PBI is from about 100 to about 10,000; and (III) at least one sulfonated polymer SP, which comprises, in polymerized form, at least 50 mol-% monomeric units U′, based on the total amount of monomeric units of the sulfonated polymer SP, wherein at least one of the monomeric units U′ carries at least one moiety —SO3H; wherein the membrane M is essentially free of water and exhibits a proton conductivity at a temperature of 100° C. or more, preferably in the range of from 100 to 250° C. of at least 10−5 S/cm, as measured by impedance method.
Abstract:
The present invention discloses a functional electrical stimulation system comprising a primary power, a boost module, an energy storage section, an output control relay, an automatic discharge circuit, a foot/hand controlled switch, a current detection chip and a current limiting fuse. The boost module comprises n DC chopper circuits connected in series, and outputs a high voltage of 100-200V. According to an enable signal and a current detection signal, the output control relay disables/enables the DC boost module. The automatic discharge circuit discharges capacitance of the energy storage section automatically when the relay turns off the power input. The Foot/hand controlled switch, the current detection chip and the current limiting fuse form a triple accident protection circuit. The functional electrical stimulation system maximizes the intensity of electrical stimulation within the range that the human body can withstand. Meanwhile, it provides multiple security protection mechanisms and enhanced reliability to avoid danger during the use.
Abstract:
A scheduler and scheduling method that may select a data transmission time interval and a data transmitting station are included in a multi-user Multiple Input Multiple Output (MIMO) communication system. An access point may include a receiver to receive channel measurement signals from stations using a plurality of receive antennas; a channel estimation unit to generate channel state matrices with respect to wireless channels formed from the stations to the receive antennas using the channel measurement signals; and a scheduler to select at least one transmitting station from the stations by considering the channel state matrices and a number of the receive antennas. The receiver may receive a data stream from the selected transmitting stations. Stations receive identifiers corresponding to transmitting stations and/or transmitting antennas to identify stations or antennas for transmitting data streams to the access point.
Abstract:
In accordance with the teachings described herein, systems and methods are provided for a switching mode power supply. In one example, the switching mode power supply may include a transformer, a switching circuit and a switching control circuit. The transformer receives a DC input voltage on a primary winding and generates a DC output voltage on a secondary winding. The switching circuit, which may include a MOSFET switch, is coupled to the transformer and is configured to switch the transformer on and off. The switching control circuit generates a switching control signal to control the switching circuit in order to regulate the DC output voltage of the transformer. The switching control circuit is configured to generate the switching control signal as a function of a timing signal having a varying frequency, wherein the varying frequency of the timing signal causes a switching frequency of the switching circuit to vary over a period of time in order to reduce electromagnetic interference caused by the switching circuit.
Abstract:
Embodiments of LED driver circuits and the associated methods are disclosed herein. In one embodiment, the LED driver circuit comprises a switch-mode converter, a controller, a feedback circuit, and a gating circuit. The feedback circuit includes a current balance circuit. The gating circuit is responsive to both a current feedback signal and a voltage feedback signal and is configured to select one of them as the feedback signal.
Abstract:
In accordance with the teachings described herein, systems and methods are provided for a switching mode power supply. In one example, the switching mode power supply may include a transformer, a switching circuit and a switching control circuit. The transformer receives a DC input voltage on a primary winding and generates a DC output voltage on a secondary winding. The switching circuit, which may include a MOSFET switch, is coupled to the transformer and is configured to switch the transformer on and off. The switching control circuit generates a switching control signal to control the switching circuit in order to regulate the DC output voltage of the transformer. The switching control circuit is configured to generate the switching control signal as a function of a timing signal having a varying frequency, wherein the varying frequency of the timing signal causes a switching frequency of the switching circuit to vary over a period of time in order to reduce electromagnetic interference caused by the switching circuit.
Abstract:
Method for controlling a drying course of a laundry dryer including the steps of (a) starting a drying course by using high temperature drying air, and sensing dryness of a drying object periodically, (b) determining a dryness saturation time point at which the dryness sensed thus exceeds a preset reference value Q, (c) determining a load of the drying object according to the drying saturation time point T_sat, and (d) varying a drying algorithm depending on the load of the drying object determined thus, whereby preventing a small amount of laundry from sticking to a drum in a drying course by varying a control algorithm of the drying motor in a case an amount of the drying object is determined to be small accurately with reference to a saturation time point of an electrode sensor.
Abstract:
A heating apparatus using an electromagnetic wave is disclosed, by which cut-of performance of an electromagnetic wave is enhanced by increasing an electromagnetic wave absorption bandwidth having cut-off performance below −70 dB. The present invention includes a door provided to an open front side of a body to be opened/closed and a choke filter having a panel type choke part arranged by at least one row each along an edge of the door and a filter part arranged by at least one row each along an edge of the choke part and having a plurality of slots, wherein a prescribed choke part is provided to a most inner side among rows of the choke and filter part.
Abstract:
Hyperbranched polymers having a plurality of at least two different types of functional groups are described. Specific embodiments include hyperbranched polymers having functional groups of a first type that are substantially uniformly distributed throughout the hyperbranched polymer molecule and a second type of functional group that is substantially uniformly distributed at the terminals of the hyperbranched polymer molecule. The hyperbranched polymers having different types of functional groups are synthesized by reacting one or more monomers having functional groups that are capable of reacting during a set of polymerization conditions to form a hyperbranched polymer, wherein at least one of the monomers contains latent functional groups that are not reactive during polymerization.
Abstract:
A microwave oven door, and more particularly, an apparatus for shielding electromagnetic wave that compensates for the length of slots formed in an end of an oven door in order to improve the shielding ability capable of preventing the leakage of electromagnetic wave from the cavity. In the apparatus, a choke structure includes a choke base connected with an inner portion of the oven door, a choke inner side portion bent perpendicularly from the choke base and a choke top bent from the choke inner side portion to contact a front circumferential portion of an oven cavity. Slots are formed in the choke top and the choke inner side portion at a predetermined interval. Each slot is extended from a distal end of the choke top to a predetermined point of the choke inner side portion. The predetermined point is distanced the same as or smaller than the half of the width of the choke inner side portion from a joint between the choke top and the choke inner side portion.