摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
摘要:
A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
摘要:
A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
摘要:
A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
摘要:
A method of fabricating a nonvolatile memory device includes forming trenches in a substrate defining device isolation regions therein and active regions therebetween. The trenches and the active regions therebetween extend into first and second device regions of the substrate. A sacrificial layer is formed in the trenches between the active regions in the first device region, and an insulating layer is formed to substantially fill the trenches between the active regions in the second device region. At least a portion of the sacrificial layer in the trenches in the first device region is selectively removed to define gap regions extending along the trenches between the active regions in the first device region, while substantially maintaining the insulating layer in the trenches between the active regions in the second device region. Related methods and devices are also discussed.
摘要:
A semiconductor device includes first, second, and third conductive lines, each with a respective line portion formed over a substrate and extending in a first direction and with a respective branch portion extending from an end of the respective line portion in a direction different from the first direction. The branch portion of a middle conductive line is disposed between and shorter than the respective branch portions of the outer conductive lines such that contact pads may be formed integral with such branch portions of the conductive lines.