摘要:
A power transmission mechanism is attached to a housing of a rotary machine for inputting power to a rotary shaft of the rotary machine and includes a rotary body that is rotatably supported by the housing through a rotary body bearing and an electric motor, a stator of which is supported by the housing through a stator bracket. A positioning structure for the power transmission mechanism includes a bearing positioning means and a bracket positioning means. The bearing positioning means positions the rotary body bearing forward and rearward in an axial direction of the rotary shaft relative to the housing and has front and rear positioning surfaces. The bracket positioning means positions the stator bracket forward and rearward in the axial direction and has front and rear positioning surfaces. At least one of the front and rear positioning surfaces of the respective positioning means is shared with each other.
摘要:
A compressor includes a housing, a rotary shaft, a pulley, an electric motor, a pulley one-way clutch, and a motor one-way clutch. The shaft is rotatably supported by the housing. The pulley is operably connected to the shaft and includes a power transmission portion. When power is transmitted from a vehicular engine to the power transmission portion, the pulley is rotated. The electric motor rotates the shaft and includes a rotor, which is operably connected to the shaft. At least part of the electric motor overlaps the power transmission portion in the axial direction of the shaft. The pulley one-way clutch is located between the pulley and the shaft and selectively permits and prevents power transmission between the pulley and the shaft. The motor one-way clutch is located between the rotor and the shaft and selectively permits and prevents power transmission between the rotor and the shaft.
摘要:
A housing of a compressor supports a rotary shaft. The rotary shaft is coupled to a pulley with a pulley one-way clutch and is coupled to a rotor of an electric motor with a motor one-way clutch. The pulley is supported by the housing with a pulley bearing. The electric motor overlaps a power transmission portion in the axial direction of the rotary shaft. At least two of the bearing, the pulley one-way clutch, the motor one-way clutch, and a brush device of the electric motor overlap each other in the axial direction of the rotary shaft. As a result, the size of the compressor is reduced in the axial direction of the rotary shaft.
摘要:
An electric compressor includes a rotary shaft that is driven by an electric motor. The motor generates driving torque. Pistons compress gas in accordance with rotation of the rotary shaft. During one turn of the rotary shaft, the times when the net load torque generated by the pistons is minimum and the times when the driving torque of the motor is minimum occur at substantially the same rotation angles of the rotary shaft. Also, during one turn of the rotary shaft, the times when the net load torque is maximum and the times when the driving torque of the motor is maximum occur at substantially the same rotation angles of the rotary shaft. The driving torque is always greater than the net load torque. Therefore, the motor need not be large to generate sufficient torque.
摘要:
A motor-driven compressor has a compression mechanism, a rotary shaft, an electric motor, a motor drive circuit, a connecting terminal and a housing assembly. The compression mechanism, the electric motor, and the motor drive circuit are disposed along the axial direction of the rotary shaft in the housing assembly having first through third housings. The first housing is used for mounting the electric motor and the compression mechanism. The second housing has a terminal mounting portion for fixing the connecting terminal. The first and second housings have fastening portions at the radially peripheral portion thereof. The third housing is joined to the second housing to form an accommodation space for accommodating the motor drive circuit. The closed casing is formed by fastening the fastening portions of the first and second housings by means of a first bolt and connecting the second housing to the open end of the first housing.
摘要:
A motor-driven compressor has a compression mechanism, a rotary shaft, an electric motor, a motor drive circuit, a connecting terminal and a housing assembly. The compression mechanism, the electric motor, and the motor drive circuit are disposed along the axial direction of the rotary shaft in the housing assembly having first through third housings. The first housing is used for mounting the electric motor and the compression mechanism. The second housing has a terminal mounting portion for fixing the connecting terminal. The first and second housings have fastening portions at the radially peripheral portion thereof. The third housing is joined to the second housing to form an accommodation space for accommodating the motor drive circuit. The closed casing is formed by fastening the fastening portions of the first and second housings by means of a first bolt and connecting the second housing to the open end of the first housing.
摘要:
A motor-driven compressor has a compression mechanism, a rotary shaft, an electric motor, a motor drive circuit and a housing assembly. The compression mechanism, the electric motor and the motor drive circuit are disposed along the axial direction of the rotary shaft in the housing assembly. The housing assembly has first and second housings. The first housing mounts the electric motor and the compression mechanism. The first housing has first and second mounting lugs formed integrally with the peripheral surface of the first housing. The second housing is joined to the first housing for accommodating the motor drive circuit. The second housing has a third mounting lug formed integrally with the second housing. The first through third mounting lugs are fastened to a mounting object to which the motor-driven compressor is to be mounted by means of fastening members.
摘要:
A motor-driven compressor has a compression mechanism, a rotary shaft, an electric motor, a motor drive circuit and a housing assembly. The compression mechanism, the electric motor and the motor drive circuit are disposed along the axial direction of the rotary shaft in the housing assembly. The housing assembly has first and second housings. The first housing mounts the electric motor and the compression mechanism. The first housing has first and second mounting lugs formed integrally with the peripheral surface of the first housing. The second housing is joined to the first housing for accommodating the motor drive circuit. The second housing has a third mounting lug formed integrally with the second housing. The first through third mounting lugs are fastened to a mounting object to which the motor-driven compressor is to be mounted by means of fastening members.
摘要:
A wave cam type compressor is provided. The compressor has a wave cam body mounted on a rotary shaft for integral rotation and pistons operably contacting said cam body by way of shoes. The shoes are moveable relative to the cam body according to the rotation of the cam body. The shoes move on predetermined paths on cam surfaces of the cam body. The rotation therewith of the rotary shaft is converted into a reciprocation movement of the pistons between top dead center and a lower dead center in cylinder bores to compress fluid supplied into the cylinder bores. Each cam surface has a contour matching the locus of a predetermined smooth two-dimensional imaginary curve when the curve is translated from its plane in the direction perpendicular to the plane. A first portion is provided on the cam surface to drive the piston to the bottom dead center and a second portion is provided on the cam surface to drive the piston to the top dead center. The second portion has a greater radius of curvature than the first portion.
摘要:
Disclosed is a compressor having a plate rotatable about an axis of a rotary shaft and a piston connected to the plate. The plate causes the piston to reciprocate between a top dead center and a bottom dead center of its stroke in accordance with the rotation movement of the plate. Cam surfaces are provided on the plate for actuating the piston. The cam surfaces have first portions for driving the piston toward the top dead center, and second portions for driving the piston toward the bottom dead center. Transmission members are interposed between the piston and the cam surface for transmitting the rotational movement of the plate to the piston. The first and second portions cause the transmission members to follow on the cam surfaces. At lease one of the first and second portions are arranged to have a normal line extending obliquely to the axis of the rotary shaft for constant contact between the transmission members and the one of the portions.