摘要:
A heat-sensitive negative-working lithographic printing plate precursor includes a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating including an image-recording layer which includes hydrophobic thermoplastic polymer particles, a binder, and an infrared absorbing dye; wherein the hydrophobic thermoplastic polymer particles have an average particle diameter, measured by Photon Correlation Spectroscopy, of more than 10 nm and less than 40 nm; the amount of the IR-dye, without taking into account an optional counter ion, is more than 0.80 mg per m2 of the total surface of the thermoplastic polymer particles, measured by Hydrodynamic Fractionation; and the amount of hydrophobic thermoplastic polymer particles relative to the total weight of the ingredients of the imaging layer is at least 60%.
摘要翻译:热敏负性平版印刷版原版包括具有亲水性表面的或具有亲水层的涂层及其上设置的涂层,所述涂层包括图像记录层,该图像记录层包括疏水性热塑性聚合物颗粒,粘合剂, 和红外吸收染料; 其中所述疏水热塑性聚合物颗粒具有通过光子相关光谱测量的平均粒径大于10nm且小于40nm; 通过流体力学分级测量,不考虑任选的抗衡离子的IR染料的量大于0.80mg / m 2热塑性聚合物颗粒的总表面; 并且疏水性热塑性聚合物颗粒相对于成像层的成分的总重量的量为至少60%。
摘要:
A method is disclosed for accurate reproduction of high-quality halftone images comprising microdots by means of lithographic plate materials which comprise a heat-sensitive positive-working coating that requires wet processing. Such microdots have a dot size ≦25 μm and may be obtained by stochastic screening or by amplitude-modulated screening at a ruling of not less than 150 lpi. It has been established that the “physical right exposure energy density” (physical REED) lies in the range from CP to 1.5*CP, wherein the physical REED is defined as the energy density at which the physical area on the plate, occupied by a microdot corresponding to a 50% halftone in the image data, coincides with the 50% target value; and wherein CP is the clearing point of the plate which is defined as the minimum energy density that is required to obtain, after processing, a dissolution of 95% of the coating. An accurate reproduction of microdots can therefore be achieved by exposing the material with light having an energy density in the range from CP to 1.5*CP. Loss of microdots by overexposure is thereby avoided.
摘要:
A method of making a lithographic printing plate is disclosed which comprises the steps of providing a lithographic printing plate precursor comprising (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which comprises hydrophobic thermoplastic polymer particles; exposing the coating to heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; developing the precursor by applying a gum solution to the coating, thereby removing non-exposed areas of the coating from the support. According to the above method, the plate precursor can be developed and gummed in a single step.
摘要:
A method for making a heat-sensitive negative-working lithographic printing plate precursor is disclosed comprising the steps of (i) preparing a coating solution comprising hydrophobic thermoplastic polymer particles and a hydrophilic binder; (ii) applying said coating solution on a support having a hydrophilic surface or which is provided with a hydrophilic layer, thereby obtaining an image-recording layer; (iii) drying said image-recording layer; characterized in that said hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm, and that the amount of said hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the dried image-recording layer.
摘要:
A method for making a lithographic printing plate is disclosed which comprises the steps of: (i) providing a negative-working, heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating comprising an image-recording layer which comprises hydrophobic thermoplastic polymer particles and a hydrophilic binder, wherein the hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm and wherein the amount of the hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the image-recording layer; (ii) exposing the coating to heat or infrared light, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (iii) developing the precursor by applying an aqueous, alkaline solution, thereby removing non-exposed areas of the coating from the support, wherein the aqueous alkaline solution has a pH≧11 and comprises a phosphate buffer or a silicate buffer.
摘要:
A method has been disclosed of preparing ultrafine hydrophobic latex particles of polymers and copolymers by free radical emulsion polymerization in a water-based system, making use therefor, in order to polymerize or copolymerize monomers or monomer mixtures respectively, of at least one compound selected from the group consisting of dimers and cobalt complexes, acting as a chain transfer agent (CTA), wherein said latex particles have an average particle size of less than 100 nm, being more than 10% lower than if prepared in the absence of said CTA, characterized in that said polymerization is conducted in a water-based reaction in the presence of a chain transfer agent and of a surfactant, wherein said surfactant is present in a concentration versus said monomer or monomer mixture of from 5 up to 25% by weight for a non-ionic surfactant or from 0.05 up to 10% by weight for an ionic surfactant, more particularly a surfactant in a concentration below twice its critical micelle concentration.
摘要:
A method is disclosed for accurate reproduction of high-quality halftone images comprising microdots by means of lithographic plate materials which comprise a heat-sensitive positive-working coating that requires wet processing. Such microdots have a dot size ≦25 μm and may be obtained by stochastic screening or by amplitude-modulated screening at a ruling of not less than 150 lpi. It has been established that the “physical right exposure energy density” (physical REED) lies in the range from CP to 1.5*CP, wherein the physical REED is defined as the energy density at which the physical area on the plate, occupied by a microdot corresponding to a 50% halftone in the image data, coincides with the 50% target value; and wherein CP is the clearing point of the plate which is defined as the minimum energy density that is required to obtain, after processing, a dissolution of 95% of the coating. An accurate reproduction of microdots can therefore be achieved by exposing the material with light having an energy density in the range from CP to 1.5*CP. Loss of microdots by overexposure is thereby avoided.
摘要:
A method for removing ink-accepting areas of a lithographic printing master is disclosed which enables to recycle the lithographic substrate of the printing master. The method comprises after a cleaning step a treatment of the recycled substrate with an aqueous solution having a pH
摘要:
A method of lithographic printing is disclosed which comprises the steps of unwinding a web of an imaging material from a supply spool, the imaging material comprising (1) a flexible lithographic base having a hydrophilic surface and (2) an image-recording layer which is removable in a single-fluid ink or can be rendered removable in a single-fluid ink by exposure to heat or light, wrapping the imaging material around a cylinder of a printing press, image-wise exposing the image-recording layer to heat or light, processing the image-recording layer by supplying single-fluid ink, thereby obtaining a printing master, printing by supplying single-fluid ink to the printing master which is mounted on a plate cylinder of the printing press, removing the printing master from the plate cylinder, preferably by winding up on an uptake spool. Since the image-recording layer can be processed by single-fluid ink, the imaging material is suitable for on-press processing in printing presses wherein no fountain solution is supplied to the plate. The method allows a rapid, fully automatic plate change with reduced press down time.
摘要:
A direct-to-plate method of lithographic printing is disclosed which enables to recycle the lithographic substrate of the printing master. The method comprises the steps of (a) making a negative-working imaging material by coating on a hydrophilic substrate a coating solution comprising hydrophobic thermoplastic polymer particles and a hydrophilic binder; (b) making a printing master having ink-accepting areas by image-wise exposing the imaging material; (c) applying ink and fountain solution to the printing master; (d) removing the ink-accepting areas from the printing master by supplying an amide and preferably also an alkanolamine. The above steps are preferably carried out on-press.