摘要:
The present invention provides, inter alia, a method for generating a genome-wide epigenomic map, comprising a correlation between methylation variable CpG positions (MVP) and genomic DNA sample types. MVP are those CpG positions that show a variable quantitative level of methylation between sample types. Particular genomic regions of interest (ROI) provide preferred marker sequences that comprise multiple, and preferably proximate MVP, and that have novel utility for distinguishing sample types. The epigenic maps have broad utility, for example, in identifying sample types, or for distinguishing between and among sample types. In a preferred embodiment the epigenomic map is based on methylation variable regions (MVP) within the major histocompatibility complex (MHC), and has utility, for example, in identifying the cell or tissue source of a genomic DNA sample, or for distinguishing one or more particular cell or tissue types among other cell or tissue types. Analysis of epigenetic characteristics of one, or of a set of nucleic acid sequences, in the context of an inventive epigenomic map, allows for the determination of an origin of the nucleic acids.
摘要:
The present invention provides, inter alia, a method for generating a genome-wide epigenomic map, comprising a correlation between methylation variable CpG positions (MVP) and genomic DNA sample types. MVP are those CpG positions that show a variable quantitative level of methylation between sample types. Particular genomic regions of interest (ROI) provide preferred marker sequences that comprise multiple, and preferably proximate MVP, and that have novel utility for distinguishing sample types. The epigenic maps have broad utility, for example, in identifying sample types, or for distinguishing between and among sample types. In a preferred embodiment the epigenomic map is based on methylation variable regions (MVP) within the major histocompatibility complex (MHC), and has utility, for example, in identifying the cell or tissue source of a genomic DNA sample, or for distinguishing one or more particular cell or tissue types among other cell or tissue types. Analysis of epigenetic characteristics of one, or of a set of nucleic acid sequences, in the context of an inventive epigenomic map, allows for the determination of an origin of the nucleic acids.
摘要:
The present application provides methods and nucleic acids the classification of a biological sample. This is achieved by the analysis of the expression status of at least one of the genes selected from Table 1 as disclosed.
摘要:
Described is a method for detecting 5-methylcytosine in genomic DNA samples. First, a genomic DNA from a DNA sample is chemically converted with a reagent, 5-methylcytosine and cytosine reacting differently, and the pretreated DNA is subsequently amplified using a polymerase and at least one primer. In the next step, the amplified genomic DNA is hybridized to at least one oligonucleotide, forming a duplex, and said oligonucleotide is elongated by at least one nucleotide, the nucleotide carrying a detectable label, and the elongation depending on the methylation status of the specific cytosine in the genomic DNA sample. In the next step, the elongated oligonucleotides are analyzed for the presence of the label.
摘要:
A method is described for the amplification of nucleic acids, in which the segments to be amplified are first hybridized with at least two primer oligonucleotides that have two domains, wherein the sequence-specific domain found at the 3-end hybridizes to the segment to be amplified, while the generic domain found at the 5-end does not hybridize. Then an amplification reaction is conducted by means of a polymerase and subsequently a labeled primer oligonucleotide, which binds to the generic domain of the first primer, is hybridized to the amplificate which is formed. In the last step, the sequence of the amplificate is investigated.
摘要:
The present invention concerns a method for the detection of cytosine methylation in DNA samples, wherein the following steps are conducted: (a) a genomic DNA sample, which comprises the DNA to be investigated and background DNA, is chemically treated in such a way that all of the unmethylated cytosine bases are converted to uracil, whereas the 5-methylcytosine bases remain unchanged; (b) the chemically treated DNA sample is amplified with the use of at least 1 primer oligonucleotide as well as a polymerase, whereby the DNA to be investigated is preferred as the template over the background DNA, and (c) the amplified products are analyzed and the methylation status in the DNA to be investigated is concluded from the presence of an amplified product and/or from the analysis of additional positions.
摘要:
Described is a method for detecting 5-methylcytosine in genomic DNA samples. First, a genomic DNA from a DNA sample is chemically converted with a reagent, 5-methylcytosine and cytosine reacting differently, and the pretreated DNA is subsequently amplified using a polymerase and at least one primer. In the next step, the amplified genomic DNA is hybridized to at least one oligonucleotide, forming a duplex, and said oligonucleotide is elongated by at least one nucleotide, the nucleotide carrying a detectable label, and the elongation depending on the methylation status of the specific cytosine in the genomic DNA sample. In the next step, the elongated oligonucleotides are analyzed for the presence of the label.
摘要:
The invention describes a set of oligonucleotides as probes for the detection of relevant variations of DNA methylation in a target group of genes, the use thereof for the detection of gene variants with respect to DNA methylation, a medical device which uses a set of oligonucleotides, a method for investigating the methylation state of an individual as well as a method for creating a model for evaluating the probability of occurrence of a health problem of an individual. Such disorders can be: undesired drug interactions cancer diseases CNS malfunctions, damage or disease symptoms of aggression or behavioral disturbances clinical, psychological and social consequences of brain lesions psychotic disturbances and personality disorders dementia and/or associated syndromes cardiovascular disorder, malfunction and damage malfunction, damage or disorder of the gastrointestinal tract malfunction, damage or disorder of the respiratory system lesion, inflammation, infection, immunity and/or convalescence malfunction, damage or disease of the body as an abnormality in the development process malfunction, damage or disorder of the skin, the muscles, the connective tissue or the bones endocrine and metabolic malfunction, damage or disorder headaches or sexual malfunction.
摘要:
Systems, methods and computer program products for guiding selection of a therapeutic treatment regimen or a preventive therapeutic treatment regimen are disclosed. The method comprises (A) providing to a computing device comprising a first knowledge base comprising information about a plurality of different methylation statuses at selected sites of the DNA in cells with a known disease or medical condition and/or healthy cells, a second knowledge base comprising a plurality of expert rules for evaluating and selecting a type of disease or medical condition based on the methylation status at selected sites of the DNA of a patient, (B) generating in said computing device a ranked listing of diseases or medical conditions based on the information about the methylation status at selected sites of the DNA of the patient, the first knowledge base and the second knowledge base.
摘要:
Described is a method for detecting 5-methylcytosine in genomic DNA samples. First, a genomic DNA from a DNA sample is chemically converted with a reagent, 5-methylcytosine and cytosine reacting differently, and the pretreated DNA is subsequently amplified using a polymerase and at least one primer. In the next step, the amplified genomic DNA is hybridized to at least one oligonucleotide, forming a duplex, and said oligonucleotide is elongated by at least one nucleotide, the nucleotide carrying a detectable label, and the elongation depending on the methylation status of the specific cytosine in the genomic DNA sample. In the next step, the elongated oligonucleotides are analyzed for the presence of the label.