摘要:
A system and method automatically calibrate a posture sensor, such as by detecting a walking state or a posture change. For example, a three-axis accelerometer can be used to detect a patient's activity or posture. This information can be used to automatically calibrate subsequent posture or acceleration data.
摘要:
A system and method automatically calibrate a posture sensor, such as by detecting a walking state or a posture change. For example, a three-axis accelerometer can be used to detect a patient's activity or posture. This information can be used to automatically calibrate subsequent posture or acceleration data.
摘要:
A system and method automatically calibrate a posture sensor, such as by detecting a walking state or a posture change. For example, a three-axis accelerometer can be used to detect a patient's activity or posture. This information can be used to automatically calibrate subsequent posture or acceleration data.
摘要:
An example method includes monitoring a first posture including a first lateral decubitus posture (LDP), recording a first LDP record based on the first LDP, computing a first posture trend based on the first LDP record and determining and providing a wellness indication based on the first posture trend.
摘要:
A device and method can monitor or trend a patient's respiration rate measurements according to the time of day. The device, which may be implantable or external, collects and classifies respiration rate measurements over time. The trended information about particular classes of respiration rate measurements is then communicated to a remote external device, which in turn provides an indication of heart failure decompensation. Examples of classes of respiration rate measurements include a daily maximum respiration rate value, a daily minimum respiration rate value, a daily maximum respiration rate variability value, a daily minimum respiration rate variability value, and a daily central respiration rate value. These respiration rate measurements can be further classified into daytime or nighttime respiration rate measurements.
摘要:
In an embodiment, an implantable medical device includes a controller circuit, a posture sensing circuit, and a physiological sensing circuit. The controller circuit senses a change in a physiological signal as a result of a change in posture, and generates a response as a function of that change. In another embodiment, the controller circuit identifies a heart failure condition as a function of the change in the physiological signal.
摘要:
In an embodiment, an implantable medical device includes a controller circuit, a posture sensing circuit, and a physiological sensing circuit. The controller circuit senses a change in a physiological signal as a result of a change in posture, and generates a response as a function of that change. In another embodiment, the controller circuit identifies a heart failure condition as a function of the change in the physiological signal.
摘要:
A device and method can monitor or trend a patient's respiration rate measurements according to the time of day. The device, which may be implantable or external, collects and classifies respiration rate measurements over time. The trended information about particular classes of respiration rate measurements is then communicated to a remote external device, which in turn provides an indication of heart failure decompensation. Examples of classes of respiration rate measurements include a daily maximum respiration rate value, a daily minimum respiration rate value, a daily maximum respiration rate variability value, a daily minimum respiration rate variability value, and a daily central respiration rate value. These respiration rate measurements can be further classified into daytime or nighttime respiration rate measurements.
摘要:
A device and method can monitor or trend a patient's respiration rate measurements according to the time of day. The device, which may be implantable or external, collects and classifies respiration rate measurements over time. The trended information about particular classes of respiration rate measurements is then communicated to a remote external device, which in turn provides an indication of heart failure decompensation. Examples of classes of respiration rate measurements include a daily maximum respiration rate value, a daily minimum respiration rate value, a daily maximum respiration rate variability value, a daily minimum respiration rate variability value, and a daily central respiration rate value. These respiration rate measurements can be further classified into daytime or nighttime respiration rate measurements.
摘要:
This document discusses, among other things, systems and methods for measuring the dynamics of pulmonary congestion in heart failure subjects over time to monitor the subjects susceptibility to pulmonary edema, including sensing and receiving information indicative of a bodily pressure and information indicative of pulmonary fluid, and using the transient responses of these measurements to compute parameters related to the dynamics of thoracic fluid accumulation, such as a critical pressure (Pc), a critical time (Tc), or a filtration index (Kfi).