摘要:
A planar substrate has a moisture activated shrinking filament applied thereon. When wetted, the shrinking filament shrinks and causes the planar substrate to gather and pucker. The planar substrate with the filament thereon may be compressed into a compact shape when in a dry state.
摘要:
A planar substrate has a moisture activated shrinking filament applied thereon. When wetted, the shrinking filament shrinks and causes the planar substrate to gather and pucker. The planar substrate with the filament thereon may be compressed into a compact shape when in a dry state.
摘要:
An auxetic fiber and corresponding material that not only responds to an external force, but also responds to moisture. The auxetic fiber is made in part from a moisture activated shrinking filament. Even if no external force is applied to the fiber, a pseudo tensile force is created by wetting the auxetic fiber.
摘要:
Systems and methods for monitoring nutritional uptake of an individual are disclosed. The method can include monitoring microflora intestinal gas concentration levels associated with a patient and adjusting the volume of nutrient provided by the patient with an artificial feeding device based at least in part on the microflora intestinal gas levels associated with the patient. A microflora intestinal gas sensor can be used to monitor the microflora intestinal gas associated with the patient. The microflora intestinal gas sensor can monitor the microflora intestinal gas in a patient's exhaled breath or in the patient's digestive tract. The microflora intestinal gas sensor be included as part of an enteral feeding system at the distal end or outside end of an enteral feeding tube. Systems and methods for monitoring nutritional uptake of an infant based on microflora intestinal gas levels associated with the infant are also disclosed.
摘要:
Systems and methods for monitoring nutritional uptake of an individual are disclosed. The method can include monitoring microflora intestinal gas concentration levels associated with a patient and adjusting the volume of nutrient provided by the patient with an artificial feeding device based at least in part on the microflora intestinal gas levels associated with the patient. A microflora intestinal gas sensor can be used to monitor the microflora intestinal gas associated with the patient. The microflora intestinal gas sensor can monitor the microflora intestinal gas in a patient's exhaled breath or in the patient's digestive tract. The microflora intestinal gas sensor be included as part of an enteral feeding system at the distal end or outside end of an enteral feeding tube. Systems and methods for monitoring nutritional uptake of an infant based on microflora intestinal gas levels associated with the infant are also disclosed.