Abstract:
A system and method for measuring the deformation over time of the surface of a non-Newtonian fluid in a sampling container in response to an airjet that is applied for a specified time are disclosed. The change is the sample surface displacement is measured quantitatively by means of optical triangulation or other similar optical or electronic distance measuring device. After cessation of the airjet, gravitational forces cause the sample material to flow back to its original surface profile. Both the amplitude of the deformation displacement due to the force of the airjet and the recovered displacement, within specific time periods are characteristic of asphalt binder material with varying amounts of polymer or other additives used to control the ultimate properties and performance of the material. As a result, comparison of the quantitative measurements of control samples can allow discrimination from samples with different properties and hence different formulations.
Abstract:
A system and method for measuring the deformation over time of the surface of a non-Newtonian fluid in a sampling container in response to an airjet that is applied for a specified time are disclosed. The change is the sample surface displacement is measured quantitatively by means of optical triangulation or other similar optical or electronic distance measuring device. After cessation of the airjet, gravitational forces cause the sample material to flow back to its original surface profile. Both the amplitude of the deformation displacement due to the force of the airjet and the recovered displacement, within specific time periods are characteristic of asphalt binder material with varying amounts of polymer or other additives used to control the ultimate properties and performance of the material. As a result, comparison of the quantitative measurements of control samples can allow discrimination from samples with different properties and hence different formulations.
Abstract:
Inhibitors of the soluble epoxide hydrolase (sEH) are provided that incorporate multiple pharmacophores and are useful in the treatment of diseases.
Abstract:
A method for effecting reduction, stabilization and enhancement of fusion of the human cranio-cervical junction, which may be performed in order to relieve mechanical stresses imparted to the spinal cord and brainstem as a result of an abnormal clivo-axial angle, includes steps of achieving the correct craniocervical relationship, of effecting a fusion of a first portion of a bone forming material based structural member to a human cranium, and effecting fusion of a second portion of the bone forming material based structural member to a least one portion of a human cervical spine. Fusion of the bone forming material based structural member to the human cranium may be promoted through the use an osteointegration apparatus that includes a porous ossomeric mesh and a frame member.
Abstract:
A method and apparatus for connecting threaded members while ensuring that a proper connection is made. In one embodiment, the applied torque and/or rotation are measured at regular intervals throughout a pipe connection makeup. When a shoulder contact is detected, a predetermined torque value and/or rotation value is added to the measured torque and/or rotation values, respectively, at shoulder contact and rotation continued until this calculated value(s) is reached.
Abstract:
This invention tests a vehicle, such as an aircraft, using nondestructive interferometry. An interferometer detects movements in the vehicle surface due to stress. One applies such stress by pressurizing the vehicle. In one embodiment, a hood housing the interferometer attaches to the vehicle surface with the aid of a vacuum. One can vary the pressure in the vehicle in various ways, while monitoring the interferometer for signs of defects in the structure behind the surface. The invention also includes an arrangement for substantially automating the analysis. For example, one can automatically position the interferometer according to position information received from appropriate sensors, in combination with stored information about the structure of the vehicle. One preferably uses a real-time interferometer, such as an electronic shearography camera, in the present invention. One can quickly determine the location of defects by observing fringes on a video monitor.
Abstract:
An object is tested for defects by interferometry, by comparing images of the object taken under stressed and unstressed conditions. The stress is applied by perturbing the object with acoustic waves, produced by a speaker directed towards the object, without any mechanical coupling to the object. The acoustic energy can be of a single frequency, or it can be distributed over a set of random frequencies (i.e. white noise), or it can be in the form of a signal which is "swept" through a range of frequencies. In the latter case, the results can be stored in a video buffer which records the maximum signal obtained, for each pixel, while the signal is swept through the frequency range. Different defects in the object may resonate at varying frequencies within the given range. By exciting the object at each frequency within the range, and superimposing the maximum signals obtained for each pixel, the resulting image is likely to show all the locations on the object which may be defective. The preferred form of interferometry is electronic shearography, which is particularly suitable for recording interference patterns in a video buffer. The present invention is especially useful in detecting delaminations in bonded articles, and is particularly advantageous in testing large objects.
Abstract:
This invention detects leaks in small, hermetically sealed packages, especially microchips or other packages of electronic circuits. The invention includes a procedure for detecting fine leaks, and a somewhat different procedure for finding gross leaks. To detect gross leaks, one places the package in a chamber, and varies the pressure in the chamber slightly. If the leak is not too big, one wall of the package, such as its lid, initially becomes deformed, but quickly returns to its original position, due to the leak. If the leak is very large, the wall of the package may not move at all. The position of the wall is monitored with an interferometer, preferably an electronic shearography apparatus. The movements of the wall show whether there is a gross leak. In the fine leak test, the package is placed in the chamber and the pressure is changed substantially, thus causing the walls of the package to deform. If there is a fine leak, a deformed wall gradually returns to its initial position. This gradual return can be measured by the interferometer, and the rate at which the wall returns to its starting position can be used to calculate the leak rate. The interferometer can be located inside the test chamber, or it can be located outside the chamber. At least one additional "control" package is preferably placed inside the chamber, alongside the test package, to verify the accuracy of the test results.
Abstract:
An improved method and apparatus for measuring the length of an open pipe includes a sound transducer placed in spaced open air communication with the interior of the pipe at a selected end. A logic circuit is employed with the transducer for producing a square wave sound pulse that is directed at the pipe's selected end. An oscillator provides an ambient temperature modified count in accordance with the time required for the pulse to travel the length of the pipe and return. For compensating for error tending to be introduced because of the spacing of the impedance reflective surface at the far end of the pipe, a standoff device establishes such a distance between the transducer and the selected end of the pipe as to effect an adjustment in the duration of the oscillator count that corrects for the error. In another embodiment a microprocessor is employed with the transducer to produce two successive square wave sound pulses to effect an adjustment in the count of an oscillator clock to avoid a false reading due to the above-mentioned spacing of the reflective surface. The amplitude of the greatest peak of the first pulse is measured. The gain of an amplifier is then adjusted to make a timer stop, modified in accordance with ambient temperature, during the reception of the echo from the second pulse when 40% of the amplitude of the peak echo is obtained.
Abstract:
Hologram apparatus for detecting flaws has a photographic station for supporting a photosensitive medium. The photographic station together with the photosensitive medium forms a developing chamber with a transparent face having a depth in the range of from about 0.005" to about 0.125, preferably from about 0.005" to about 0.125". The developing chamber has a periphery with a contour which always changes at an angle greater than about 115.degree. and is preferably circular. Associated hydraulic equipment supplies and removes fluid from the developing chamber. A laser supplies coherent light for the article to be tested for reflection to the photographic station. A reference beam is directed to the photographic station. For use in inspecting pipe in the field, the apparatus advantageously has a housing and a pair of saddles each having different diameter pipe receiving portions and a strap securing system. The photographic station can develop the photosensitive medium in situ and may be used in any spatial orientation. The invention also comprises the photographic station per se without the laser.