Abstract:
A method and apparatus for generating a comprehensive response model for a sheet forming machine are provided. A finite number of critical points and a response type are used to create a continuous response profile for each actuator zone. The continuous response profile for each actuator zone is discretized into a discrete response profile based on the resolution appropriate for an application. A multi-zone response model for each pair of actuator set and sheet property profile is created from the discretized response profile of the actuator zones in the actuator set. The comprehensive response model for a multivariable sheet-forming machine is created from a collection of multi-zone response models for multiple pairs of actuator sets and sheet property profiles.
Abstract:
A method for controlling an industrial process, such as a paper machine, is devised to handle multiple manipulated and controlled variables of the process. The method includes making available for selection a plurality of different multivariable sub-control systems for controlling the process. A user interface table is generated and displayed showing configuration information about the plurality of multivariable sub-control systems. A selection of one of the multivariable sub-control systems is received through the user interface and used by the computer system for configuring the multivariable control system and performing control calculation for the multivariable control system.
Abstract:
A method and apparatus for generating a comprehensive response model for a sheet forming machine are provided. A finite number of critical points and a response type are used to create a continuous response profile for each actuator zone. The continuous response profile for each actuator zone is discretized into a discrete response profile based on the resolution appropriate for an application. A multi-zone response model for each pair of actuator set and sheet property profile is created from the discretized response profile of the actuator zones in the actuator set. The comprehensive response model for a multivariable sheet-forming machine is created from a collection of multi-zone response models for multiple pairs of actuator sets and sheet property profiles.
Abstract:
A method and apparatus for creating a generalized response model for a sheet forming machine are provided. Sheet property profiles are measured while the setpoint of an actuator is changed. A response (or change) profile of the sheet property resulting from a setpoint change is calculated. A finite set of critical points are selected from the property response profile. Using the selected critical points, the property response profile is classified in one of a finite number of response types. Under each of the response types, the property response profile is fitted with a plurality of continuous functions associated therewith. These continuous functions are combined to form the response model that minimizes the deviation between the property response and the fitted combination of continuous functions.
Abstract:
A method and apparatus for creating a generalized response model for a sheet forming machine are provided. Sheet property profiles are measured while the setpoint of an actuator is changed. A response (or change) profile of the sheet property resulting from a setpoint change is calculated. A finite set of critical points are selected from the property response profile. Using the selected critical points, the property response profile is classified in one of a finite number of response types. Under each of the response types, the property response profile is fitted with a plurality of continuous functions associated therewith. These continuous functions are combined to form the response model that minimizes the deviation between the property response and the fitted combination of continuous functions.
Abstract:
A plurality of random probing sequences are used to perturb a corresponding plurality of cross-machine direction (CD) actuators of a web manufacturing machine. The web of sheet material is measured as the CD actuators are perturbed. The global process machine direction (MD) dynamics is estimated and a CD response is estimated for each of the plurality of CD actuators using the plurality of random probing sequences, measurements of the web of sheet material and the estimated global process MD dynamics. The estimated global process MD dynamics and the estimated CD responses form 2D responses for the plurality of CD actuators. To refine the 2D responses, the estimates of global process MD dynamics, and CD responses for each of the plurality of CD actuators are iterated. The actuator dynamics of the plurality of CD actuators may also be estimated and used in the estimates of the global process MD dynamics of the plurality of CD actuators and CD responses for each of the plurality of CD actuators. Variations that are not associated with actuator responses are removed from the estimated CD responses, for example by filtering. The estimated CD responses may be further refined by selecting one of the CD responses as a reference response. All remaining CD responses are shifted into alignment with the reference response to determine relative CD response locations and to define a group of overlapping CD responses. Using iterative techniques, a mean response is determined from a group of overlapping CD responses and variation bounds are set above and below the mean response. A family of probable CD responses are generated within the variation bounds and a most probable response is selected from the family of probable responses for each CD actuator response. The CD response for each CD actuator is replaced with the most probable response shifted by an appropriate amount for each CD actuator and multiplied by an optimal gain.
Abstract:
A pixel structure having the following structure is provided. A light-shielding layer with a flat layer covering thereon is disposed on a substrate. A channel layer, a data line and a first pad are disposed on the flat layer. A source and a drain partially cover two sides of the channel layer. A gate dielectric layer with a gate, a scan line and a second pad disposed thereon covering the channel layer, the source and the data line exposes the drain and the first pad. A protection layer covering the gate and the scan line exposes the drain, the first and second pads. A patterned transparent conductive layer includes a pixel electrode disposed on the protection layer, a first retain portion disposed on the first pad and a second retain portion disposed on the second pad.
Abstract:
A pixel structure and a fabrication method thereof are provided. A substrate with a light-shielding layer and a flat layer formed thereon is provided. A first photomask process is conducted to pattern a first metal layer and a semiconductor layer for forming a source, a drain, a channel layer, a data line and a first pad. A second photomask process is conducted to pattern the protection layer, the second metal layer and the gate dielectric layer for forming a gate, a scan line and a second pad, and a part of the drain is exposed. A third photomask process is conducted to pattern a transparent conductive layer for forming a pixel electrode.
Abstract:
The CD profile of a web of material being produced is monitored and controlled to update CD control settings on-line so that changes in the operation of a machine manufacturing the web can be corrected before significant profile deviations from a desired CD profile target result. Detected variances in the profile that satisfy a search criteria initiate searches for improved CD control settings. The CD control of the present application recognizes CD actuator mapping misalignments, determines improved CD control settings and applies the improved CD control settings to fine tune a CD controller and thereby improve upon or correct mapping misalignments. The CD control of the present application also recognizes non-smoothness of the setpoints of the CD actuators and controls the smoothness of the setpoints. Recognition and correction of either CD actuator mapping misalignments or CD actuator setpoint smoothness or both can be performed by the automated optimization of the present application.
Abstract:
CD variations and/or MD variations in scan measurements are determined from spectral components of power spectra of scan measurements taken using two or more scanning speeds. Dominant spectral components having the same spatial frequencies identify CD variations and dominant spectral components having the same temporal frequencies identify MD variations. Dominant spectral components are extracted from a noisy power spectrum (PS) by sorting all spectral components into an ordered PS. A first polynomial representing background noise of the ordered PS is used to set a first threshold. Spectral components of the ordered PS that exceed the first threshold are removed to form a noise PS. A second polynomial representing the noise PS is used to set a second threshold. Spectral components of the PS that exceed the second threshold are identified as dominant spectral components of the PS.